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Abstract

Interaction cross sections σI for
42−51Ca and their neighboring nu-

clides 40−48K and 44−46Sc on a natural carbon target at around 270
MeV/nucleon have been measured at the Radioactive Isotope Beam
Factory (RIBF) at RIKEN by using the BigRIPS fragment separator.
The present σI data are the first systematic ones along the isotopic
chain in Ca mass region. Based on the Glauber-type calculation with
the modified optical limit approximation, the root-mean-square mat-

ter radii ⟨r2⟩1/2m were successfully deduced.

For Ca isotopes, significant enhancements of ⟨r2⟩1/2m compared to
the systematics of spherical nuclear radii have been observed in the re-
gion beyond the neutron magic number N = 28. These enhancements
were examined with several models. Within the simple single parti-
cle model, a significant core enlargement is required to explain the

systematics of the present experimental ⟨r2⟩1/2m for 49−51Ca. On the
other hand, the Hartree Fock calculations indicate that the enhance-
ment is due to the rapid increase of surface diffuseness. Although the
origin of significantly large enhancements of experimental results has
not been elucidated in the microscopic level yet, this may be related
to the spin-orbit force.

We also obtained the neutron skin thicknesses rnp from the deduced

⟨r2⟩1/2m incorporating the previously measured charge radii. By using
the obtained rnp for Ca isotopes, the sensitivity to the EOS parameter
L was examined with the help of mean field calculations. Adopting the
relative values of rnp, we show that the present data have a sensitivity
of 30 MeV precision to determine L without a fatal systematic error.
Present rnp which were directly determined from the experimental
proton and matter radii in the wide range of 0.05 < δ < 0.22 are more
reliable compared to the previous experimental studies mainly with
the indirect method. Nuclear structure theories which can explain
quantitatively the evolution of nuclear radii for Ca isotopes including
49−51Ca and enable us to extract a reliable L value from the present
directly-determined rnp are anticipated.
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1 Introduction

1.1 Nuclear Size

The size of a nucleus is one of the most fundamental quantities to char-
acterize nuclear properties. There have been many efforts to measure the
nuclear size, which is too small – about 10−14 m – to be seen by the usual
methods such as using a microscope. Conventionally, charge radii or charge
distributions of stable nuclei have been determined by measuring the elec-
tron elastic scattering and the transition energy of muonic atom, whereas
nuclear matter radii or distributions have been determined only by elastic
scatterings with hadronic probes. Owing to a large number of studies on the
nuclear sizes of stable nuclei, the following properties have been revealed:

• The nuclear radius R depends on their own mass number A as R =
r0A

1/3.

• The diffuseness parameters of nuclear density are about 0.5-0.7 fm in
stable nuclei.

• The point-proton density is similar to the point-neutron one.

Since 1980’s, it became possible for nuclear physics experimentalists to
access unstable nuclei far from the beta-stability line due to the remarkable
development on the production technique of unstable nuclei. This advance-
ment resulted in the discovery of some exotic nuclear structures which are
beyond the conventional knowledge of stable nuclei. The interaction cross
section σI measurements, for instance, have made significant contributions
to unstable nuclear physics. By measuring σI at Lawrence Berkeley Labora-
tory (LBL), I. Tanihata et al. deduced interaction radii RI of nuclei whose
atomic numbers are from Z = 2 (Helium) to Z = 5 (Boron) [TA85a]. The
extraordinary large enhancements of RI were found in very neutron-rich 11Li
and 14Be nuclei (Fig. 1-1(a)). This discovery pointed to the existence of
the neutron-halo structure in some neutron-rich nuclei. In the early 2010’s,
M. Takechi et al. found the enhancement of σI due to the deformation ef-
fect in Ne and Mg isotopes which are located in the “island of inversion”
[TA12, TA14]. Moreover, they also discovered the deformed-halo structure
in 29,31Ne and 37Mg, whose halo structures arise due to the large contribution
of smaller orbital angular momentum in their valence neutron caused by the
deformation effect. These deformed-halo structures have been studied from
the theoretical approaches [MI12, WAT14].

In parallel with the neutron-halo discoveries, T. Suzuki et al. found the
neutron-skin structure in neutron-rich Na isotopes by measuring σI [SU95].
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(a)

(b)

Figure 1-1: (a) Interaction radii RI for He, Li, Be, and B isotopes [TA89]. (b)
Root-mean-square neutron (open) and proton (closed) radii of Na isotopes
[SU95]. These figure are taken from Refs. [TA89, SU95].

(b)(a)

Figure 1-2: (a) Interaction cross sections σI for Ne isotopes [TA12] and (b)
reaction cross section σR for Mg ones [TA14] on C target. In the neutron-
rich nuclei, σI are larger than the systematics of ones of stable nuclei (black
line and blue band) due to the deformation effect. Large enhancements can
be seen at 29,31Ne and 37Mg, which correspond to the deformed-halo nuclei.
These figures are taken from Refs. [TA12, TA14].
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SnSp

proton neutron

rnp

Figure 1-3: Schematic description of the correlation between rnp and Sp−Sn.

In this structure, a layer consisting of only neutrons emerges at the nuclear
surface. The neutron-skin thickness rnp is defined as the difference between

the point-proton and point-neutron root-mean-square (RMS) radii ⟨r2⟩1/2p,n :

rnp ≡ ⟨r2⟩1/2n − ⟨r2⟩1/2p . (1.1)

The emergence of neutron-skin structure is often interpreted as due to the
difference between proton and neutron separation energies Sp −Sn as shown
in Fig. 1-3 [TA92, SU95].

1.2 Nuclear Structure of Calcium Isotopes

The Ca isotopic chain has two well-known traditional doubly magic nuclei
40Ca and 48Ca. Very recently, two new magic numbers at N = 32 and
N = 34 have been suggested experimentally from masses of 53,54Ca [WI13]
and excitation energies of the 1st 2+ state E(2+1 ) [ST13]. Many theoretical
works using different approaches have been reported to explain the emergence
of these neutron magic numbers – called the shell evolution, which include not
only newly established (N = 32, 34) but also traditional (N = 20, 28) magic
numbers. J.D. Holt et al. reproduced the N = 28 magicity, which can not be
explained with the microscopic two-body (NN) interaction, by introducing
the three-body (3N) forces [HO12]. In addition, theoretical calculations with
the NN + 3N forces also explained the N dependences on the masses and
E(2+1 ). Meanwhile, in the shell-model approach, the large shell gaps in the
N = 32, 34 are reproduced by reducing the attractive tensor force between
the 1f7/2 proton orbital and the 1f5/2 neutron one [OH05, ST13]. This shell
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model calculation also explains the existence of the N = 32 magicity in Ti
[JA02, DI05, LI04] and Cr [CH68, BU05, PR01] isotopes which, unlike Ca,
do not have the large shell gap in the N = 34 (Fig. 1 of Ref. [ST13]). Hence,
the Ca isotopic chain has attracted attention from both experimental and
theoretical aspects.

Nuclear radii of Ca isotopes also have received a great deal of attention.
Although 48Ca has 8 neutrons more than 40Ca, both isotopes have almost
the same charge radii [PA84]. While this has been explained qualitatively by
taking the cross shell excitation from sd to pf shell into account, it has not
been reproduced at the microscopical level yet. Recently, the charge radii of
40−52Ca as shown in Fig. 1-4(a) were measured by the optical isotope-shift
methods with the high-resolution bunched-beam collinear laser spectroscopy
[GA16]. The measured charge radii increase unexpectedly beyond N = 28,
which has been also found in neighboring potassium isotopes [KR14]. This
growth of charge radii from 48Ca to 52Ca cannot be explained quantitatively
with several theoretical calculations including the density functional theo-
ries (DFT) with several interactions, the configuration interaction (CI) cal-
culations obtained from large-scale shell model calculations with the mean
field theory, and the ab initio coupled-cluster calculations with SRG1 and
SRG2 interactions (Fig. 1-4(b)) [GA16]. The ab initio calculation with the
recently developed chiral effective field theory interaction NNLOsat [EK15],
which was obtained by reproducing charge radii and binding energies up to
A ∼ 25 can reproduce charge radii below 48Ca accurately, and the radii
beyond N = 28 relatively well. On the other hand, matter radii (or neu-
tron radii) of Ca isotopes were deduced only for stable nuclei 40,42,44,48Ca by
the elastic scattering with hadronic probes such as the proton, α, and pion
[FR68, AL76, AL77, CH77, RA81, AL82, BO84]. However, these results in
the same nucleus are inconsistent with each other beyond the quoted errors,
and hence it is difficult to discuss the evolution of matter radii in the Ca
isotopic chain. In terms of the neutron skin thickness, the ab initio calcula-
tion with the NNLOsat interaction predicts a smaller neutron skin thickness
than the DFT calculation[HA16]. Thus, in order to understand the evolu-
tion of nuclear radii in the vicinity of N = 28, more precise and systematic
measurements of matter radii are desired.
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a

b

Figure 1-4: (a) Charge radii of 39−52Ca [GA16] (black-filled circles) in com-
parison with the ab initio calculations and the DFT calculation (UNEDF0).
(b) The difference of charge radii between 48Ca and 52Ca in comparison with
the ab initio, DFT, and CI calculations obtained from the large-space shell
model calculation in harmony with the mean field theory [GA16]. This figure
is taken from Ref. [GA16].
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1.3 Neutron Skin Thickness and Its Impact on Equa-
tion of State

An equation of state (EOS) of nuclear matter describes the energy density
of the nuclear matter system. The energy density e depends on the density
ρ and the relative neutron excess δ = (N − Z)/A as

e(ρ, δ) = e(ρ, 0) + csym(ρ)δ
2 +O(δ4), (1.2)

where e(ρ, 0) is the EOS of symmetric nuclear matter and csym(ρ) is the
density-dependent symmetry energy coefficient. In general, the EOS of nu-
clear matter is expressed by a quadratic expansion around the saturation
density ρ0 as

e(ρ, 0) ≃ e0 +
1

2
K0ϵ

2, (1.3)

csym(ρ) ≃ J − Lϵ+
1

2
Ksymϵ

2, (1.4)

where ϵ is the relative density defined by

ϵ ≡ −1

3

ρ− ρ0
ρ0

. (1.5)

The EOS parameters in Eqs. (1.3) and (1.4) are defined as

K0 ≡ 9ρ20
∂2e(ρ, 0)

∂ρ2

∣∣∣∣
ρ0

,

J ≡ csym(ρ0),

L ≡ 3ρ0
∂csym(ρ)

∂ρ

∣∣∣∣
ρ0

,

Ksym ≡ 9ρ20
∂2csym(ρ)

∂ρ2

∣∣∣∣
ρ0

.

(1.6)

Therefore, the EOS is characterized by the following parameters:

ρ0 : saturation density of the symmetric nuclear matter,
e0 : energy per particle of the symmetric nuclear matter,
K0 : incompressibility of the symmetric nuclear matter,
J : symmetry energy at saturation density,
L : slope of the symmetry energy coefficient at saturation density,
Ksym : curvature of the symmetry energy coefficient at saturation density.

6



30

20

10

0

-10

-20

En
er

gy
 p

er
 p

ar
tic

le
 e

 (M
eV

)

0.40.30.20.10.0
Density  (fm-3)

Pure neutron matter
(δ = 1)

L

K0
ρ0

Symmetric nuclear matter
(δ = 0)

e0

J

K0 + Ksym

Figure 1-5: Equation of state of symmetric (black line) and pure neutron
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The EOS of nuclear matter system governs not only nuclear physics but
also the structure of neutron star. For example, the correlation between mass
and radius of neutron stars can be obtained by the EOS using the Tolman-
Oppenheimer-Volkov (TOV) equation [LI11]. Moreover, the understanding
of neutron star’s property is important for the elucidation of the mechanism
of supernova explosion. In Fig. 1-5, we show the EOS for the symmetric
nuclear matter (δ = 0) and the pure neutron matter (δ = 1) together with
the role of each parameter. In order to determine the EOS parameters, both
terrestrial nuclear physics experiments and astrophysical observations have
been performed. In the EOS of symmetric nuclear matter, ρ0 and e0 have
been determined precisely by masses and charge radii of stable nuclei [II04].
The parameter K0 has been determined by the isoscalar giant monopole reso-
nance via α-inelastic scattering in medium-heavy nuclei asK0 = 231±5 MeV
[YO99]. The symmetry energy (isovector) term, on the other hand, had not
been determined precisely. Although J has been determined precisely as
30 ± 4 MeV from nuclear masses [CH10], L and Ksym have large uncertain-
ties, namely L = 20 MeV to 110 MeV [CH10] and Ksym = −550± 100 MeV
[LI07], respectively. Therefore, the precise determination of L and Ksym are
the keys to the elucidation of the EOS of asymmetric nuclear system around
the saturation density.

Although several nuclear physics experiments and astrophysical observa-
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tions have been performed to determine L, the results have large uncertainties
and are inconsistent with each other. The measurement of rnp is one of the
most hopeful experimental methods to determine L. In the compressible
droplet model [CE09, WA09], the neutron-skin thickness rnp of a nucleus can
be written as

rnp(δ) ≃
√

3

5

(
3

2
r0
J

Q

δ − 1
20

e2

r0
Z
J
A−1/3

1 + 9
4
J
Q
A−1/3

)
−
√

3

5

e2

70J
Z + rsurfacenp , (1.7)

where r0 is the nuclear radius constant (∼ 1.2 fm), J is the symmetry energy
at ρ0, and Q is the surface stiffness which represents the resistance to the
enlargement of nuclear radius. In Eq. (1.7), the second and third terms
represent the contribution of Coulomb force and the one resulting from the
difference of the surface diffusenesses between proton and neutron densities,
respectively. The neutron-skin thickness in Eq. (1.7) depends on J/Q. M.
Warda et al. found the following correlation between J/Q and L by the mean
field calculations with several effective interactions [WA09]:

L = l0
J

Q
+ l1 [MeV], (1.8)

139 < l0 < 150 [MeV],

−57 < l1 < −52 [MeV].
(1.9)

Therefore, rnp is almost proportional to L. On the other hand, from the
point of view of thermodynamics, the energy E, pressure P , and volume V
of a system are related by P = −∂E/∂V , so that the pressure of a neutron
matter at the saturation density Pn(ρ0) can be derived as

Pn(ρ0) = ρ20
∂e(ρ, δ = 1)

∂ρ

∣∣∣∣
ρ0

=
L

3ρ0
. (1.10)

Hence, we can interpret L as the pressure of the neutron matter. The
schematic relation between rnp and L is shown in Fig. 1-6. For example,
when L is large, which corresponds to a soft surface (small Q) or a solid
saturation density (large J), the size of the neutron density increases due to
the large pressure, resulting in a thick neutron skin at the nuclear surface.

The main experimental method so far to extract rnp for the determination
of L is the measurement of E1 resonance excitation. Sine the E1 excitation
is an isovector oscillation mode due to the different responses of protons and
neutrons, the difference between proton and neutron density distributions
can be probed. In the stable Sn isotopes and 208Pb, rnp were derived via
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Figure 1-6: Schematic view of the correlation between L and rnp.

the measurements of isovector giant dipole resonance (IVGDR) and the low-
energy E1 excitation mode called pygmy dipole resonance (PDR), which is
the oscillation mode between the neutron skin part and the isospin sym-
metric core. Moreover, recently, the nuclear polarizabilities αD derived by
the complete measurement of E1 response were reported and used to ob-
tain rnp in a few nuclei such as 48Ca [BI17], 68Ni [RO13], 120Sn [HA15], and
208Pb [TA11]. Although there are other experimental methods such as ones
that use an antiprotonic atom [TR01, JA04] and the coherent pion photo-
production [TAR14], these methods including the E1 excitation are indirect
measurements of rnp. The direct determination of rnp was attempted by the
parity violating elastic electron scattering of 208Pb [AB12]. However, precise
determination of rnp cannot be achieved yet because of the limited statistics.
So far, the direct determination of rnp of Sn isotopes and 208Pb has been
done only by the proton elastic scattering [TE08, ZE10].

For the isotopic chain of Sn which has several stable isotopes, the rnp’s
have been obtained through several experiments. However, there are system-
atic deviations among respective measurements in the same nuclei as shown
in Fig. 1-7. This figure also shows that rnp at large δ has a high sensitivity
to L. However, in the conventional methods to measure rnp’s, only stable
nuclei were treated besides the very limited cases such as 68Ni (PDR[WI11]
and αD [RO13]) and 130,132Sn (PDR [KL07]). Therefore, in order to deter-
mine L precisely, the measurement of rnp in a wide range of δ, which also
include unstable nuclei by the direct method is strongly desirable. From this
point of view, the application of direct extraction of rnp from the matter
radii determined by σI in combination with the charge radius by the optical
isotope shift as performed on Na isotopes by T. Suzuki (Fig. 1-4 (b)) [SU95]
is suitable.

It is suggested that Eq. (1.4) is valid between about ρ0/2 and 2ρ0 with
less than 5% discrepancy [PI09]. When the density is within ρ0/2 < ρ < 2ρ0,
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Figure 1-7: Previous experimental results of rnp of Sn isotopes as a function of
δ. The closed gray circle show the dipole polarizability αD [HA15] and closed
black squares show the antiprotonic atoms (APA) [TR01, JA04]. The results
of proton elastic scattering (ES) [TE08] and isovector giant dipole resonance
(IVGDR) [KR94] are represented by closed red squares and closed orange
diamonds, respectively. There are two experimental results of the isovector
spin dipole resonance (IV-SDR) shown by open blue circles [KR99] and open
purple squares [KR04], respectively. The results of pigmy dipole resonance
(PDR) of unstable nuclei 130,132Sn are plotted by open pink triangles. The
Skyrme-Hartree-Fock (SHF) calculations using MSL0 interactions with L =
20, 60, 100 MeV [CH10] are also shown by the blue dotted, black solid, and
red dashed lines, respectively.
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the correlation of asym(A) ≃ csym(ρ), where asym(A) represents the symmetry
energy of a nucleus whose mass number is A, can hold even down to medium-
mass nuclei such as A ∼ 40 [CE09].

1.4 Thesis Objectives

In order to understand the evolution of nuclear radii in the Ca isotopic
chain and determine the EOS parameter L from rnp extracted by the direct
method in a wide region of δ, we measured σI in the Ca region. In this
thesis, we show the first experimental results of σI for 42−51Ca and their
neighboring nuclei 40−48K and 44−46Sc, whose charge radii are already known
via isotope shift measurements. The previous σI measurements were mainly
performed for nuclei lighter than Ar isotopes, while the present study is the
first σI measurement in the vicinity of N = 28. The matter radii were derived
from the measured σI based on the Glauber theory. Moreover, rnp were also
obtained from the present matter radii and the corresponding charge radii in
the region of 0.05 < δ < 0.22.

In Chapter 2, we describe the relation between σI and the matter radius
based on the Glauber theory. The experimental method, facility, and detec-
tors are presented in Chapter 3. The data analysis to extract σI and the
obtained σI are summarized in Chapter 4. Then, in Chapter 5, the matter
radius and rnp are derived. The discussion of the evolution of nuclear radii
in the Ca isotopic chain and the extraction of the EOS parameter L are
also shown in Chapter 5. Finally, the summary and the future prospects are
mentioned in Chapter 6.
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2 Cross Sections and Nuclear Radii

2.1 Definition of Interaction Cross Section σI

Reaction cross sections σR and interaction cross sections σI are sensitive to
nuclear radii and density distributions. In 1985, I. Tanihata et al. measured
σI by using unstable nuclear beams, then deduced radii of unstable nuclei
[TA85a, TA85b]. This experiment led to the beginning of unstable nuclear
beam physics.

The σR is defined by the subtraction of total elastic scattering cross sec-
tion σel from total cross section σtot:

σR ≡ σtot − σel. (2.1)

In other words, σR is a cross section of all inelastic collisions.
The σI is defined as the nuclide-changing cross sections. Therefore, σI is

connected to σR as
σI ≡ σR − σinel, (2.2)

where σinel is a cross section of inelastic process in which the projectile does
not change its nuclide. In a high-energy collision, the inelastic scatterings to
bound states in the projectile can hardly occur because the incident energy
is much higher than the Fermi energy of projectile nucleus. Hence, the σI
is nearly equal to σR within a few % difference for the energy larger than
several hundred MeV/nucleon [OG92].

Moreover, σI which is the nuclide-changing reactions can be classified
whether the atomic number Z of fragment nucleus changes or not. The cross
section of charge-changing process is called charge-changing cross section
σCC, while the cross section of neutron removal reaction where Z is not
changed is called neutron removal cross section σ−xn. In consequence, σR
can be written by

σR = σI + σinel

= σCC + σ−xn + σinel.
(2.3)

In the present study, we measured σI at approximately 270 MeV/nucleon.
In such energy region, σinel is so small compared to σI (for example, at most
2% for 24−38Mg+12C at ∼ 240 MeV/nucleon [TA14]) that the condition σI ≃
σR is fulfilled. For this reason, in the following subsections, we show the
relation between the nuclear radius and σR on behalf of σI.
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2.2 Classical Description of Reaction Cross Section

In a classical picture, σR can be considered in the framework of very simple
geometrical model as shown in Fig. 2-1. This is called a black disk model.
In this model, a reaction always occurs when the projectile and target nuclei
overlap each other. Therefore, σR can be defined as

σR ≡ π(RP +RT)
2, (2.4)

where RP and RT are radii of projectile and target nuclei, respectively. If a
nucleus whose radius is known is adopted as a target, RP can be derived via
σR. Kox et al. measured σR for several projectile-target systems in the wide
energy range of 10 to 300 MeV/nucleon [KO84, KO87]. These systematic
data led to the empirical formula of σR as follows:

σR = πr0
2

(
A

1/3
P + A

1/3
T + a

A
1/3
P A

1/3
T

A
1/3
P + A

1/3
T

− c(E)

)2

×
(
1− BC

ECM

)
, (2.5)

AP : mass number of projectile nucleus,
AT : mass number of target nucleus,
BC : Coulomb barrier energy,
ECM : kinetic energy in the Center-of-Mass system,
r0, a : constants (r0 = 1.1 fm, a = 1.85),

σR

RP

RT

Projectile nucleus

Target nucleus

RP+RT

Figure 2-1: Geometrical model of σR
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where c(E) represents a transparency of nuclear surface as shown in Fig. 2-
2. For ECM < 100 MeV/nucleon, a significant decrease of c(E) can be
seen, which corresponds to a high sensitivity to the surface region of nu-
cleus. When a nucleus-nucleus reaction is depicted by the superposition of
nucleon-nucleon collisions, the energy dependence of σR(E) results from that
of nucleon-nucleon total cross section σNN(E). The optical-limit approxi-
mation of Glauber theory explained in Sec. 2.5 is also based on such a
description.

Figure 2-2: Energy dependence of c(E) [KO87]. This figure is taken from
Ref. [KO87].

Figure 2-3: Energy dependence of σNN(E) [NA10]. This figure is taken from
Ref. [NI11].
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2.3 Scattering Theory

In a three-dimensional scattering theory, a Schrödinger equation for a
particle with mass m in a spherically symmetric potential can be written as[

− ℏ2

2m
∇2ψ + V (r)ψ

]
= iℏ

∂ψ

∂t
. (2.6)

When this potential V (r) has a finite range a, the solution of Eq. (2.6) for
r > a is a plane wave as

ψ(r) = eikz (2.7)

with
k ≡

√
2mE/ℏ2. (2.8)

This solution represents an incident wave function. After interacting with a
target nucleus, the scattering results in an outgoing spherical wave, whose
amplitude decreases as a function of r. Therefore, the wave function af-
ter scattering can be expressed by the superposition of incident wave and
scattered one given by

ψ(r) = eikz + f(θ)
eik

′r

r
, (2.9)

where f(θ) is a scattering amplitude, and k′ is a wave number for the scat-
tered wave. Since it is assumed that V (r) has the spherical symmetry, f(θ)
do not depend on ϕ but only θ. Probability currents of incident and scattered
waves are given by

jinc =
ℏk
m
, (2.10)

jscatt =
ℏk′

mr2
|f(θ)|2 +O(r−3). (2.11)

Hence, the number of outgoing particles per solid angle (dΩ = dS/r2) per
time dN/dΩ can be derived as

dN

dΩ
= r2 · jscatt =

ℏk′

m
|f(θ)|2. (2.12)

In the case of elastic scattering, k is equal to k′, so that a differential cross
section dσ/dΩ is derived as

dσ

dΩ
=

1

jinc

dN

dΩ

=
k′

k
|f(θ)|2

= |f(θ)|2

(2.13)
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In other words, elastic scattering differential cross section measurements en-
able us to derive f(θ).

In order to clarify ψ(r), the following equation has to be solved:[
∇2 + k′2

]
ψ(r) =

2m

ℏ2
V (r)ψ(r) (2.14)

The homogeneous solution of this equation is equal to the plane wave eikz,
while the inhomogeneous solution can be represented with the Green function
G(r − r′). As a result, the general solution is written by

ψ(r) = eikz +
2m

ℏ2

∫
G(r − r′)V (r′)ψ(r′)d3r′. (2.15)

The Green function fulfills the following equation:[
∇2 + k′2

]
G(r − r′) = δ(r − r′), (2.16)

where δ(r− r′) is a delta function. This Green function can be derived with
the Fourier transformation as

G(r − r′) =
1

(2π)3

∫
eiq·(r−r′)G′(q)d3q, (2.17)

δ(r − r′) =
1

(2π)3

∫
eiq·(r−r′)d3q. (2.18)

Substituting Eqs. (2.17) and (2.18) into Eq. (2.16), the following equation
is given as

1

(2π)3

∫
(−q2 + k′2)eiq·(r−r′)G′(q)d3q =

1

(2π)3

∫
eiq·(r−r′)d3q,

1

(2π)3

∫ {
(−q2 + k′2)G′(q)− 1

}
eiq·(r−r′)d3q = 0.

(2.19)

From Eq. (2.19), the Green function can be derived as

G′(q) =
1

k′2 − q2
, (2.20)

G(r − r′) =
1

(2π)3

∫
eiq·(r−r′)

k′2 − q2
d3q

= − 1

4π

eik
′|r−r′|

|r − r′|

(2.21)
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The wave function ψ(r) can be obtained by substituting Eq. (2.21) into Eq.
(2.15):

ψ(r) = eikz − 1

4π

2m

ℏ2

∫
eik

′|r−r′|

|r − r′|
V (r′)ψ(r′)d3r′. (2.22)

Therefore, the derivation of ψ(r) corresponds to solving the integral equation
given by Eq. (2.22). In order to obtain f(θ) from Eq. (2.22), we compare the
asymptotic form of Eq. (2.22) in the limit of r → ∞ with Eq. (2.9). In such
a limit, |r′|/|r| is so small compared to 1 that the following approximation
forms can be adopted:

k′|r − r′| ≃ k′r − k′·r′, (2.23)

1

|r − r′|
≃ 1

r
. (2.24)

Taking Eqs. (2.23) and (2.24) into consideration, Eq. (2.22) can be converted
to:

ψ(r) = eikz − 1

4π

2m

ℏ2

∫
eik

′re−ik′·r′

r
V (r′)ψ(r′)d3r′

= eikz +

{
− 1

4π

2m

ℏ2

∫
e−ik′·r′

V (r′)ψ(r′)d3r′
}
eik

′r

r
.

(2.25)

Finally, the scattering amplitude f(θ) can be obtained from the comparison
of Eq. (2.25) to Eq. (2.9) as

f(θ) = − 1

4π

2m

ℏ2

∫
e−ik′·r′

V (r′)ψ(r′)d3r′. (2.26)
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2.4 Eikonal Approximation

We have to obtain the wave function ψ(r) so as to derive the scattering
amplitude f(θ). In Sec. 2.3, we define the wave function as a superposition
of incident plane wave and scattered spherical one. Then, we redefine the
solution of Schrödinger equation with a deviation of incident plane wave
ψ′(r):

ψ(r) ≡ eikzψ′(r) (2.27)

By substituting Eq. (2.27) into the Schrödinger equation, the following equa-
tion is obtained:[

− ℏ2

2m
∇2
(
eikzψ′(r)

)
+ V (r)eikzψ′(r)

]
= Eeikzψ′(r) (2.28)

In the left-hand side of Eq. (2.28), the first term can be converted to

∇2{eikzψ′(r)} = eikz
(
−k2ψ′(r) + 2ik

∂

∂z
ψ′(r) +∇2ψ′(r)

)
. (2.29)

Hence, the deviation ψ′(r) fulfills the following equation:(
vpz +

p2

2m
+ V (r)

)
ψ′(r) = 0 (2.30)

with

pz = −iℏ ∂
∂z
,

p2 = −ℏ2∇2,

v =
ℏk
m
.

(2.31)

In the eikonal approximation, though the scattered wave is distorted by
the potential V , this distortion results in only the slight change of wave
function. Namely, the eikonal approximation is assumed to the following
conditions:

• The potential depth V is quite shallow compared to the incident energy
E:

1 ≫ |V |
E
. (2.32)
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• The change of potential amplitude per one wavelength of the scattered
wave is quite small:

a≫ 1

k
, (2.33)

where a is a potential width.

Above conditions are valid in the high energy region. In the eikonal approxi-
mation, the secondary deviation in Eq. (2.30) is negligible, so that Eq. (2.30)
can be reduced as

− iℏv
∂

∂z
ψ′(r) + V (r)ψ′(r) = 0. (2.34)

By solving this equation with the initial condition limz→−∞ ψ′(r) = 1, we
can obtain the following expression:

ψ′(r) = exp

[
− i

ℏv

∫ z

−∞
V (b+ z′ez)dz

′
]
, (2.35)

where we adopt cylindrical coordinates as r ≡ (b, z). Now, we introduce a
phase shift function χ(b) defined by

χ(b) = − 1

ℏv

∫ ∞

−∞
V (b+ z′ez)dz

′. (2.36)

Therefore, the wave function can be expressed as

ψ(r) = exp [i {kz + χ(b)}] . (2.37)

Although this expression has an invalid asymptotic form in the limit of r →
∞, it works as a good approximation nearby the potential. Equation (2.34)
can be converted with Eq. (2.36) to

iℏv
(
eiχ(b) − 1

)
=

∫ ∞

−∞

[
V (r) exp

{
− i

ℏv

∫ z

−∞
V (b+ z′ez)dz

′
}]

dz. (2.38)

By substituting Eq. (2.38) into Eq. (2.26), the scattering amplitude f(θ)
can also be represented as

f(θ) =
ik

2π

∫
db′e−iq·b′(1− eiχ(b)). (2.39)

When |χ(b)| is much smaller than 1, the scattering amplitude with the eikonal
approximation is equal to that with the Born approximation.
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2.5 Glauber Theory

Glauber utilized the eikonal approximation in harmony with an adiabatic
approximation in order to depict nuclear-nuclear collisions as superpositions
of nucleon-nucleon collisions between nucleons composing the colliding nuclei.
In the adiabatic approximation, it is assumed that the nuclear excitation
energy can be negligible, which is also valid in a high energy region. This
framework is called the Glauber theory. In this section, we briefly explain the
Glauber theory with the optical limit approximation (OLA) in Sec. 2.5.2 and
the modified optical limit approximation (MOL) in Sec. 2.5.4, respectively.
The detailed description of Glauber theory can be seen in Refs. [SU03, SU08].

2.5.1 General Description of Glauber Theory

Nucleon-Nucleus Scattering
A Hamiltonian of target nucleus HT fulfills the following eigenequation:

HTΨα = EαΨα, (2.40)

where Ψ is an eigenfunction, E is an eigenvalue, and subscript α denotes a
state, respectively. First, we calculate a transition probability from the grand
state (α = 0) to the state α. In the relative coordinates, the Hamiltonian of
the system which consists of an incident nucleon and a target nucleus with
mass number A is given by

H =
p2

2µ
+HT +

A∑
i=1

V (r − ri), (2.41)

where µ is a reduced mass, p a relative momentum, ri the coordinates of
i-th nucleon in the target, and V (r − ri) an interaction potential between
an incident nucleon and nucleon in the target, respectively. When the wave
function after scattering is defined as

ψ(r, r1, . . . , rA) ≡ eikzΨ(r, r1, . . . , rA), (2.42)

The Schrödinger equation is written in analogy with Eq. (2.29) by[
vpz +

p2

2m
+ (HT − E0) + V (r)

]
Ψ(r, r1, . . . , rA) = 0. (2.43)

In the left-hand side of Eq. (2.43), the second term can be ignored based
on the eikonal approximation. On the other hand, the eigenvalue of the
third term on the left-hand side of Eq. (2.43) corresponds to the excitation
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energy of target nucleus. Based on the adiabatic approximation, this term
can be negligible compared to vpz. The wave function Ψ(r, r1, . . . , rA) can
be derived with the initial condition limz→−∞Ψ = Ψ0 as

Ψ(r, r1, . . . , rA) = exp

[
− i

ℏv

∫ z

−∞

A∑
i=1

V (b+ z′ez − ri)dz
′

]
Ψ0(r, r1, . . . , rA).

(2.44)
Therefore, the scattering amplitude to the state α, f(θ)α, can be derived in
the similar procedure to derive Eq. (2.39) as

f(θ)α =
ik

2π

∫
db⟨Ψα|e−iq·b(1− ei

∑A
i=1 χ(b−si))|Ψ0⟩, (2.45)

where si ≡ (xi, yi) is the coordinates on a plane perpendicular to the axis of
beam direction. The coordinates b− si correspond to the impact parameter
between the incident particle and the i-th internucleon as shown in Fig. 2-4.
The cross section to the state α is obtained as

σα =

∫
dΩ|fα(θ)|2

=

∫
dq

k2

∣∣∣∣ ik2π
∫
db⟨Ψα|e−iq·b(1− ei

∑A
i=1 χ(b−si))|Ψ0⟩

∣∣∣∣2
=

∫
db

∣∣∣∣∣⟨Ψα|

(
1− exp

{
i

A∑
i=1

χ(b− si)

})
|Ψ0⟩

∣∣∣∣∣
2

,

(2.46)

where the Fourier transformation of the delta function is used:

(2π)2δ(b− b′) =

∫
eiq·(b−b′)dq. (2.47)

We can derive the cross sections to any states with Eq. (2.46). The elastic
scattering cross section σel, where the final state is α = 0, is given by

σel =

∫
db

∣∣∣∣∣1− ⟨Ψ0| exp

{
i

A∑
i=1

χ(b− si)

}
|Ψ0⟩

∣∣∣∣∣
2

. (2.48)

On the other hand, the total cross section σtot can be derived based on
the optical theorem as

σtot =
4π

k
Imfα=0(θ = 0)

= 2

∫
db⟨Ψ0|

(
1− Re exp

{
i

A∑
i=1

χ(b− si)

})
|Ψ0⟩.

(2.49)
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Figure 2-4: Geometrical configuration of each quantity in the nucleon-nucleus
scattering.
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By the combination of Eqs. (2.48) and (2.49), σR can be obtained as

σR ≡σtot − σel

=2

∫
db⟨Ψ0|

(
1− Re exp

{
i

A∑
i=1

χ(b− si)

})
|Ψ0⟩

−
∫
db

∣∣∣∣∣1− ⟨Ψ0| exp

{
i

A∑
i=1

χ(b− si)

}
|Ψ0⟩

∣∣∣∣∣
2

=

∫
db

1−

∣∣∣∣∣⟨Ψ0| exp

{
i

A∑
i=1

χ(b− si)

}
|Ψ0⟩

∣∣∣∣∣
2
.

(2.50)

Nucleus-Nucleus Scattering
Next, we expand the discussion of nucleon-nucleus scattering to that of

nucleus-nucleus scattering. In analogy with Eq. (2.45), the scattering ampli-
tude fα,β(θ) from the ground state |ΨP

0Ψ
T
0 ⟩ to the final state ⟨ΨP

αΨ
T
β | which

consists of the state of projectile nucleus α and that of target nucleus β is
given by

fα,β(θ) =
iK

2π

∫
d2b⟨ΨP

αΨ
T
β |e−iq·b(1− ei

∑
i

∑
j χ(b+sPi −sTj ))|ΨP

0Ψ
T
0 ⟩, (2.51)

whereK is a relative wave number. The geometrical configuration of nucleus-
nucleus scattering is shown in Fig. 2-5. Based on Eqs. (2.46) - (2.50), we can
derive σR for the nucleus-nucleus system as follows:

σR = σtotal − σela=00

= 2

∫
db⟨ΨP

0Ψ
T
0 |

(
1− Re exp

{
i
∑
i

∑
j

χ(b+ sPi − sTj )

})
|ΨP

0Ψ
T
0 ⟩

−
∫
db

∣∣∣∣∣1− ⟨ΨP
0Ψ

T
0 | exp

{
i
∑
i

∑
j

χ(b+ sPi − sTj )

}
|ΨP

0Ψ
T
0 ⟩

∣∣∣∣∣
2

=

∫
db

1−

∣∣∣∣∣⟨ΨP
0Ψ

T
0 | exp

{
i
∑
i

∑
j

χ(b+ sPi − sTj )

}
|ΨP

0Ψ
T
0 ⟩

∣∣∣∣∣
2
.
(2.52)
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Figure 2-5: Geometrical configuration of each quantity in the nucleus-nucleus
scattering.
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2.5.2 Input Parameters for Calculation of Reaction Cross Section

The derivation of σR based on Eq. (2.52) needs the following quantities:

• Phase-shift function χ(b)

• Ground-state wave function of projectile nucleus |ΨP
0 ⟩

• Ground-state wave function of target nucleus |ΨT
0 ⟩

Although χ(b) should be essentially calculated from the bare nuclear force,
the strict calculation is quite difficult due to the unresolved characteristics of
nuclear force itself. Therefore, we introduce the profile function defined as

Γ(b) ≡ 1− eiχ(b). (2.53)

The scattering amplitude given by Eq. (2.39) is expressed with Γ(b) by

f(θ) =
ik

2π

∫
dbe−iq·b(1− eiχ(b))

=
ik

2π

∫
dbe−iq·bΓ(b),

(2.54)

which means that Γ(b) is related to the scattering amplitude with the Fourier
transformation. The Γ(b) is often parametrized as

Γ(b, E) =
1− iα

2

σtot
NN(E)

2πβ
exp(− b2

2β
), (2.55)

where σtot
NN(E) is a nucleon-nucleon total cross section, α a ratio of the real to

the imaginary part of nucleon-nucleon scattering amplitude, and β a slope pa-
rameter of the nucleon-nucleon elastic differential cross section. Ultimately,
the β has a meaning of the effective range of nuclear force. The angular dis-
tribution of nucleon-nucleon elastic scattering enables us to deduce β owing
to its dependence of e−βq2/2, while the combination of σNN

ela and σtot
NN provides

the following relationship:

σNN
ela =

∫
db|Γ(b)|2 = 1 + α2

16πβ2
(σtot

NN)
2. (2.56)

Since the hadron production channels are closed belowE < 300 MeV/nucleon,
Eq. (2.56) can be reduced with σNN

ela = σtot
NN as

β =

√
(1 + α2)σtot

NN

16π
. (2.57)
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In the zero-range limit given by β → 0, Γ(b) can be expressed by the quite
simple form as

Γ(b) =
1− iα

2
σtot
NN(E)δ(b). (2.58)

On the other hand, a density distribution ρ(r) which consists of A nucle-
ons is defined as

ρ(r) =

⟨
Ψ

∣∣∣∣∣
A∑
i=1

δ(r − ri)

∣∣∣∣∣Ψ
⟩

=

∫
dr1 . . .

∫
dri . . .

∫
drA

∣∣∣∣∣
A∑
i=1

δ(r − ri)Ψ(r1, . . . , ri, . . . , rA)

∣∣∣∣∣
2

=

∫
dr1 . . .

∫
dri . . .

∫
drA

A∑
i=1

δ(r − ri)
A∏
i=1

n(ri)

=
A∑
i=1

ni(r),

(2.59)

where ni(r) is a probability density distribution of i-th nucleon in the nucleus.
Hence, instead of χ(b), |ΨP

0 ⟩, and |ΨT
0 ⟩, we can utilize Γ(b), ρP(r), and ρT(r)

to calculate σR.

2.5.3 Optical Limit Approximation (OLA)

The calculation of σR is quite complicated due to the second term of func-
tion to be integrated in Eqs. (2.50) and (2.52). Although these calculations
can be performed with the Monte Carlo integration [VA02], several approx-
imations such as the optical limit approximation (OLA) and the modified
optical limit approximation (MOL) are commonly utilized. In the nucleus-
nucleus scattering, the cumulant expansion theorem enables us to expand the
second term of the function to be integrated in Eq. (2.52) as shown below:

⟨
ΨP

0Ψ
T
0

∣∣∣∣∣exp
{
i
∑
i

∑
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χ(b+ sPi − sTj )

}∣∣∣∣∣ΨP
0Ψ

T
0

⟩

=

⟨
ΨP

0Ψ
T
0

∣∣∣∣∣
AP∏
i=1

AT∏
j=1

{
1− Γ(b+ sPi − sTj )

}∣∣∣∣∣ΨP
0Ψ

T
0

⟩

≃ exp

(
µ1 + µ2 −

1

2
µ2
1

)
.

(2.60)
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Here, µ1 and µ2 are defined by

µ1 ≡ −

⟨
ΨP

0Ψ
T
0

∣∣∣∣∣
AP∑
i=1

AT∑
j=1

Γ(b+ sP − sT)

∣∣∣∣∣ΨP
0Ψ

T
0

⟩

= −
∫∫

drPdrTρP(rP)ρT(rT)Γ(b+ sPi − sTj ),

(2.61)

µ2 ≡

⟨
ΨP

0Ψ
T
0

∣∣∣∣∣
AP∑
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AT∑
j=1

AP∑
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0Ψ

T
0

⟩
.

(2.62)
In the optical limit approximation (OLA), the first term of Eq. (2.60) µ1 is
only taken into account:

σOLA
R =

∫
db

(
1− exp

[
−2

∫
d2sPρPz (s

P)

∫
d2sTρTz (s

T)ReΓ(b+ sP − sT)

])
=

∫
db(1− T (b)),

(2.63)

with

T (b) ≡ exp

[
−2

∫
d2sPρPz (s

P)

∫
d2sTρTz (s

T)ReΓ(b+ sP − sT)

]
, (2.64)

where T (b) is called a transparency function, ρPz (sP) and ρTz (sT) represent
density distributions of projectile and target integrated on the beam direc-
tion, respectively:

ρP,Tz (sP,T) =

∫
dzρP,T(rP,T). (2.65)

By substituting Eq. (2.58) into with Eq. (2.63), the zero range optical limit
approximation (ZROLA) can be obtained as

σZROLA
R =

∫ (
1− exp

[
−
∑

i,j=p,n

σij(E)

∫
d2sPρPi,z(s

P)ρTj,z(b+ sP)

])
db.

(2.66)
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2.5.4 Modified Optical Limit Approximation (MOL)

Y. Suzuki et al. improved the OLA calculation in order to take the multiple
scattering effect into consideration [SU03]. Equation (2.61) is modified as

µ1 = −
∫∫

d2sPd2sTρP(sP)ρT(sT)Γ(b+ sPi − sTj )

→ −
∫
d2sPρPz (s

P )ΓNT(b+ sP ),

(2.67)

where the profile function for nucleon-nucleus system ΓNT is introduced. In
analogy with Eq. (2.60), ΓNT is given based on the Cumulant expansion
theorem by

ΓNT = 1− ⟨ΨT
0 |

AT∏
j=1

[
1− Γ(b− sTj )

]
|ΨT

0 ⟩

= 1− exp

[
−
∫
d2sTρTz (s

T)Γ(b− sT)

]
.

(2.68)

Therefore, the modified optical limit approximation (MOL) calculation is
written as

σMOL
R =

∫
db

(
1− exp

[
−2

∫
d2sPρPz (s

P)

[
1− exp

{
−
∫
d2sTρTz (s

T)Γ(b+ sP − sT)

}]])
.

(2.69)
This equation should also have the symmetrical form to the replacement of
projectile and target, so that Eq. (2.69) is improved as,

σSMOL
R =

∫
db

(
1− exp

[
−AP-T + AT-P

2

])
, (2.70)

with

AP-T =

∫
d2sPρPz (s

P)

(
1− exp

[
−
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d2sTρTz (s

T)Γ(b+ sP − sT)
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(2.71)

AT-P =

∫
d2sTρTz (s

T)

(
1− exp

[
−
∫
d2sPρPz (s

P)Γ(b+ sT − sP)

])
.

(2.72)
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2.6 Effect of Fermi Motion

In the conventional Glauber calculation, the bare nucleon-nucleon total
cross section σbare

NN has been applied as a σNN. Meanwhile, nucleons are moving
intrinsically in the nucleus due to the uncertainty principle. The momentum
of this Fermi motion is negligibly small in the high energy collision, so that we
can ignore this intrinsic effect. Thus, the conventional Glauber calculation
works fairly well above E = 300 MeV/nucleon, which is consistent with the
validity of assumption for the eikonal approximation.

M. Takechi et al. developed the Glauber calculation which is applicable
in the wide energy region by introducing the Fermi motion effect explicitly
in σbare

NN [TA05].
Momentum distributions of intrinsic nucleon are given by

PP(∆pP) = A exp

(
− ∆pP

2

2⟨pP2⟩

)
, (2.73)

PT(∆pT) = A exp

(
− ∆pT

2

2⟨pT2⟩

)
, (2.74)

where subscripts “P” and “T” represent projectile and target, respectively.
The width of momentum distribution

√
⟨p2⟩ has been determined as 90

MeV/c for stable nuclei [GO74]. The momentum distribution of relative
momentum pnucleon is obtained by the Galilean transformation as

P (pnucleon) =
1√

2π⟨p2⟩
exp

−
(
pnucleon −

√
Eproj(Eproj + 2m0c2)

)2
2⟨p2⟩


(2.75)

with
pnucleon = pproj +∆pP −∆pT, (2.76)

⟨p2⟩ = ⟨pP2⟩+ ⟨pT2⟩, (2.77)

where Eproj is a beam energy. Therefore, the effective momentum distribution
taking the Fermi motion into account can be derived by folding σbare

NN with
the relative momentum distribution:

σeff
NN =

∫ ∞

−∞
dpnucleonσ

bare
NN (Enucleon)P (pnucleon). (2.78)

Figure 2-6 shows σeff
NN and σbare

NN as a function of beam energy. The Fermi
motion effect increases the σNN especially below E = 200 MeV/nucleon. This
modification together with MOL calculation enables us to explain completely
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Figure 2-6: Nucleon-nucleon total cross section as a function of beam energy
with and without the Fermi motion effect [TA05]. This figure is taken from
Ref. [TA05].

the energy dependence of σR not only for 12C on 9Be, 12C, and 27Al targets
system but also for such a system with an unstable nucleus as 11Be and 8B
on 9Be, 12C, and 27Al targets in the wide energy range between a few tens
MeV and about 1 GeV [TA05].
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2.7 Effects of Electromagnetic Interaction

The Glauber calculation describes only nuclear scattering processes, while
the experimental σR results not only from nuclear interaction but also from
electromagnetic interaction. Therefore, we take electromagnetic interaction
effects into consideration in addition to the Glauber calculation from the
following points of view.

Coulomb Deflection
The Coulomb repulsion interacting between projectile and target nuclei

make the trajectory of projectile nucleus deflect as illustrated in Fig. 2-7.
From the angular momentum and energy conservation laws, the following
equations are obtained:

vb = v′b′, (2.79)

1

2
µv2 =

1

2
µv′2 + EB, (2.80)

where µ is a reduced mass, v and v′ respective velocities before and after
the interaction, and EB a Coulomb barrier, respectively. The EB is obtained
from the Coulomb’s law as follows:

EB =
e2

4πε

ZPZT

RP +RT

= αℏc
ZPZT√
σuncorr
R /π

≃1.44
ZPZT√

σuncorr
R [fm2]/π

, (2.81)

where σuncorr
R is a reaction cross section without deflection correction. If we

assume that the reduction of σR depends on the ratio of impact parameter
b/b′, the correction factor cdefl(E) can be derived with ECM ≡ µv2/2 as

c(E) =

(
b

b′

)2

= 1− EB

ECM

,

σcor
R (E) = cdefl(E)σ

uncorr
R (E).

(2.82)

Therefore, the Coulomb deflection effect reduces σuncorr
R . Fig. 2-8 shows c(E)

for AX+12 C system as a function of projectile mass number. In the present
study, the projectile mass number is in A ∼ 40 region and its bombard-
ing energy is about 280 MeV/nucleon, which results in a slight reduction
(approximately 1.1%) of σR.
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Figure 2-7: Schematic view of the deflection effect.
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Target nucleus

Projectile nucleus

Breakup fragments

Coulomb field

Virtual photon

Figure 2-9: Schematic view of electromagnetic dissociation.

Electromagnetic Dissociation
The electromagnetic dissociation (EMD) also contributes to σR. The EMD

occurs when the projectile nucleus absorbs virtual photons emitted from the
electromagnetic field of target nucleus, that is, this contribution is large when
a heavy target is employed. The EMD cross section σEMD depends on the
photodissociation cross section σγ(Eγ) by a photon with its energy Eγ and
the virtual photon spectrum Nγ(Eγ):

σEMD =

∫ ∞

0

dEγNγ(Eγ)σγ(Eγ). (2.83)

The virtual photon spectrum Nγ(Eγ) strongly depends on the target atomic
number and the incident beam energy.

In general, the main contribution to the photodissociation process is an E1
transition because it is the lowest multiplicity in the electric interaction. The
other component is much smaller than the E1 process, so that we consider
only the E1 transition. The σγ(Eγ) of A(γ, n)B process can be derived from
that of its inverse direct radiative capture reaction B(n, γ)A under the law
of time reversal invariance. Respective cross sections are connected through
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the detailed balance theorem [BA86].

σA(γ,n)B =
(2IB + 1)(2In + 1)

2(2IA + 1)

k2n
k2γ
σB(n,γ)A, (2.84)

where IA is the spin of nucleus A, IB that of nucleus B, In that of neutron,
kn the relative wave number of neutron, and kγ that of emitted photon,
respectively. The cross section of B(n, γ)A process σB(n,γ)A is obtained by

σB(n,γ)A = 0.0716µ3/2

(
1− ZB

ZA

)2 E3
γ

E3
n

(2IA + 1)(2Ii + 1)

(2IB + 1)(2If + 1)
(li010|lf0)2R2

li1lf
,

(2.85)

µ reduced mass of the B+n system,
AB mass number of the nucleus B,
ZB atomic number of the nucleus B,
Ep kinetic energy of neutron in center of mass system,
Eγ kinetic energy of emitted photon in center of mass system,
li, lf orbital angular momenta of the initial and final state,
(li010|lf0) Clebsch-Gordan coefficient for E1 transition,
Rli1lf radial matrix element for E1 operator.

From Eqs. (2.84) and (2.85), we calculated σγ for one-neutron emission
process. The Nγ(Eγ) was calculated with the point-charge approximation
based on the Weizacker and William’s method [BA86].

In the case of 43Ca on 12C at 270 MeV/nucleon, the EMD cross section
for one-neutron emission E1 process is estimated as approximately 0.1 mb,
which corresponds to only 8 × 10−3 % compared to σI. The transition of
EMD for multi-nucleon emission process is also expected to be negligible.
Therefore, we did not consider the EMD contribution.
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3 Experiment

3.1 Transmission Method

Interaction cross sections σI were measured by the transmission method.
This method is a more direct method compared to another experimental
method such as the one using measurement of γ-rays emitted as a conse-
quence of the reaction [SA89]. This is because particles are detected and
identified directly with less ambiguity in the transmission method.

In the transmission method, a cross section is derived from the atten-
uation of the number of incident particles on a target whose thickness is
known. Particle detectors are installed before and after the target as shown
in Fig. 3-1. The number of incoming particles N1 is counted by the upstream
detector and that of non-reacted particles N2 by the downstream detector,
respectively. In σI measurements, the definition of N2 means the number of
non-nuclide-changing particles.

Reaction target

tDetector 1 Detector 2

Number of 
incident particles

Number of 
non-reacted particles

Target thickness

N in
1 N in

2

N out
2N1

out

Target-in measurement

Target-out measurement

Figure 3-1: Principle of the transmission method

35



The attenuation of particles is described as

dN

dx
= −σI

(
ρNA

A

)
N, (3.1)

N : the number of non-reacted particles,
x : length along the beam axis in the target,
ρ : target density,
NA : the Avogadro number,
A : atomic weight.

Here, ρNA/A represents the number of target nuclei per unit area. By
solving this equation, the following relation is derived:

N2 = N1 exp (−σIt) ,

t =
ρNA

A
x.

(3.2)

Therefore, we can derive σI by the following equation:

σI = −1

t
ln

(
N2

N1

)
. (3.3)

In fact, a non-reaction rate R ≡ N2/N1 is less than 1 even in the measure-
ment without target since particles are also reacted in detectors. Taking this
effect into account, Eq. (3.3) for the target-in and target-out measurements
can be converted to

σIt+ σDet1
I tDet1 + σDet2

I tDet2 = − lnRin, (3.4)

σDet1
I tDet1 +

{
(1 + α)σDet2

I

}
tDet2 = − lnRout, (3.5)

where σ
Det1/2
I are interaction cross sections on detectors, tDet1/2 are thick-

nesses of detectors, and α is an enhancement factor of σDet2
I resulting from

the change of bombarding energy between target-in and target-out measure-
ments. From Eqs. (3.4) and (3.5), the following equation is deduced:

σI = −1

t
ln

(
Rin

Rout

)
− α

tDet2

t
σDet2
I . (3.6)

In cross section measurements, the effect of the second term on σI is generally
so small that we can ignore this term. Therefore, σI can be derived as

σI = −1

t
ln

(
Rin

Rout

)
. (3.7)
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The relative error of σI can be written as(
∆σI
σI

)2

=
1

σ2
I t

2

(
1−Rin

N in
1 Rin

+
1−Rout

Nout
1 Rout

)
+

(
∆t

t

)2

, (3.8)

where the following relationship is used:

∆R

R
=

√
N1R(1−R)

N1

R
=

√
1−R

N1R
. (3.9)

When (1−R)/R is quite small compared to 1, the relative error of R can be
reduced as √

1−R

N1R
∼
√

1

N1 −N2

, (3.10)

which means (1−R) approximately follows a gaussian distribution.
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3.2 Experimental Facility

In the present study, experiments were performed at the RIKEN Radioac-
tive Isotope Beam Factory (RIBF). Figure 3-2 shows a bird’s eye view of
the RIBF facility. At the RIBF, heavy ion beams are accelerated by an ac-
celerator complex consisting of a linear accelerator and four ring cyclotrons.
By the accelerator complex, Uranium-238 238U beams are accelerated up to
345 MeV/nucleon. Moreover, this facility supplies high intense 238U beams
as approximately 60 pnA. These intense 238U beams enable us to produce
many kinds of unstable nuclei which contain those far from the beta-stability
line. Produced heavy ion beams of exotic nuclei are separated by the follow-
ing superconducting isotope separator, called BigRIPS, then transported to
the several unique equipments. Thus, the RIBF facility is one of the best
platforms for nuclear physics experiments for exotic nuclear structures and
reactions in the world. By taking advantage of this ability, 83 new isotopes
have been found from 2006, the first operation of RIBF facility, to 2017
[OH08, KA09, OH10, SU13, HE13, LO15, BL16, CE16, SUM17, SUZ17].

IRC

fRC
SRC

RILAC2

RRC

BigRIPS

Figure 3-2: A bird’s eye view of RIBF facility [BigRIPS1].

3.2.1 Accelerators

At the RIBF facility, the complex consists of following accelerators.
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Figure 3-3: Acceleration scheme [IM16]. This figure is taken from Ref.
[IM16].

RILAC2 : RIKEN Heavy Ion LINAC2
RRC : RIKEN Ring Cyclotron
fRC : Fixed-frequency Ring Cyclotron
IRC : Intermediate-stage Ring Cyclotron
SRC : Superconducting Ring Cyclotron

In the present study, 238U was used as a primary beam. The 238U primary
beam was accelerated up to 345 MeV/u by the RILAC2, RRC, fRC, IRC,
and SRC as shown in Fig. 3-3 with 18.25 MHz frequency. The specification
of each accelerator is summarized in Table 3-1. A 28-GHz superconducting
electron cyclotron resonance ion source was used to produce highly charged
238U ions. In order to convert charge state of beams, two charge strippers
were installed. A Helium gas stripper was installed as a first charge stripper
between RRC and fRC. A rotating carbon-foil stripper was used as a second
charge stripper between fRC and IRC. The charge state of 238U is converted
as 35+ → 64+ → 86+ with the 6% total converting efficiency [IM16].

Table 3-1: Specification of each accelerator in accelerating 238U beams.

Accelerator K value RF frequency Charge state Energy
(MeV) (MHz) (MeV/nucleon)

RILAC2 - 36.50 35+ 0.68
RRC 540 18.25 35+ 11
fRC 570 54.75 64+ 50
IRC 980 36.50 86+ 114
SRC 2600 36.50 86+ 345
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3.2.2 BigRIPS Fragment Separator

Accelerated 238U beams are transported to the BigRIPS separator. The
schematic drawing of BigRIPS separator is shown in Fig. 3-4. Secondary
beams are produced by bombarding 238U beams on a rotating Beryllium (Be)
production target installed at F0 focal plane. The BigRIPS separator consists
of two stages. Produced secondary beams are separated roughly between F0
and F3 focal planes. This part is called the first stage. In the second stage
between F3 and F7, secondary beams are tagged according to their atomic
number Z and mass-to-charge ratio A/Q in event-by-event mode. Since the
BigRIPS separator has 14 superconducting quadrupole triplets (STQ), it
has a large angular acceptance besides its large momentum acceptance. The
specification of the BigRIPS separator is summarized in Table 3-2. We also
show the ion optics of BigRIPS separator in Fig. 3-5.

Figure 3-4: Schematic of BigRIPS [BigRIPS3].
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Figure 3-5: First-order ion optics of BigRIPS [KU12]. “X” and “Y” mean
Horizontal and Vertical, respectively. This figure is taken from Ref. [KU12].
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Table 3-2: Specification of BigRIPS separator.

1st stage 2nd stage

Configuration F0-STQ1-D1-STQ2- F3-STQ7-D3-STQ8-
F1-STQ3-D2-STQ4- F4-STQ9-D4-STQ10-
F2-STQ5-STQ6-F3 F5-STQ11-D5-STQ12-

F6-STQ13-D6-STQ14-F7
Momentum acceptance ±3% ±3%

Horizontal angular acceptance ±40 mrad ±40 mrad
Vertical angular acceptance ±50 mrad ±50 mrad

Maximum rigidity 9 Tm 9 Tm
Total path length 77 m (F0 - F7)

Momentum dispersion −2.31 cm/% 3.3 cm/%
Momentum dispersive focal plane F1 F4, F5, F6
Doubly Achromatic focal plane F2, F3 F7
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3.3 Production and Separation of Secondary Beams

3.3.1 Production of Secondary Beams

Generally, there are two types of production method of secondary beams.
One is the Isotope Separator On-Line (ISOL) type and the other is the In-
flight type. The RIBF facility is one of the In-flight facilities. Compared to
the ISOL type, In-flight type can produce secondary beams not depending
on their chemical properties and lifetimes. In the In-flight facility, secondary
beams are produced by the projectile fragmentation (PF) or the in-flight
fission (IFF) reactions.

The PF reaction mechanism is well described by the participant-spectator
model shown in Fig. 3-6(a). By a peripheral collision between an incident and
target nuclei, nucleons in the overlap region are abraded. The produced pro-
jectile fragment goes away with almost the same velocity βF as the incident
one βP. The momentum distribution of fragment reflects the sum of Fermi
motions of abraded nucleons in the incident nucleus. Goldhaber pointed out
that the width of momentum distribution can be written as

σ = σ0

√
AF(AP − AF)

AP − 1
, (3.11)

where σ0 = 90 MeV/c, AP is the mass number of projectile nucleus, and AF

is that of fragment nucleus, respectively [GO74].
On the other hand, The IFF reaction mechanism can be understood with

the schematic drawing shown in Fig. 3-6(b). When a heavy projectile such
as 238U bombards a light-mass target, a fissile fragment is produced by the
nuclear interaction. Finally, a fission fragment is produced as a result of
the nuclear fission of produced fissile fragment. This process is called the
abrasion-fission process, while the IFF reaction with a heavy-mass target
is called the Coulomb fission reaction. In the Coulomb fission process, the
incident projectile is excited by the Coulomb interaction with the target
nucleus followed by a probable fission.

As an example, we estimated production cross sections of Ca isotopes
with a combination of 345 MeV/u 238U beam and 1 mm thick Be target by
using the LISE++ [LISE] which is a simulation program for the secondary
beam production in several reaction mechanisms with the fragment separator.
Calculated production cross sections of Ca isotopes with the empirical cross
section formula EPAX3.1a [SU12] are shown in Fig. 3-7. The PF and IFF
reactions compete in the production of 42−51Ca which are ones of the mainly
present research subjects. According to the calculation, nuclei located far
from the beta-stability line are mainly produced by the IFF reaction, while
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Projectile fragment
(Spectator)

Participant

βP

Projectile

Light target

Fissile fragment
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βP ~ βP

Fission fragment

Fission fragment

(a) Projectile Fragmentation reaction

(b) In-Flight Fission reaction (Abrasion-Fission)

Figure 3-6: Schematic of Projectile Fragmentation reaction.
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nuclei located near the beta-stability line by the PF reaction. In terms of the
phase-space distributions of produced nuclei, both reactions have different
properties. Figure 3-7 shows the angular and momentum distributions of
43Ca in both reactions. The IFF reaction has broader distributions due
to the two-body reaction with a Q value of 100-200 MeV, while fragments
produced in the PF reaction has a three-dimensional Gaussian distribution
in the phase space with a fairly narrow width. The BigRIPS separator can
transmit even the broad beams from the IFF reaction with the large angular
and momentum acceptance.
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Figure 3-7: A comparison between the PF (red) and the IFF (black) reaction
in 238U 345 MeV/u+Be 1 mm → ACa. (a): Production cross sections of Ca
isotopes predicted from LISE++ [LISE] with the EPAX3.1a empirical cross
section formula [SU12]. (b): Momentum distributions of produced 43Ca. (c)
angular distributions of produced 43Ca.
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Figure 3-8: Schematic drawing of the separation of secondary beams at 1st
stage of BigRIPS.

3.3.2 Separation of Secondary Beams at the 1st Stage of BigRIPS

At the first stage of BigRIPS separator, secondary beams are separated by
the Bρ-∆E-Bρ method. Figure 3-8 shows the schematic view of the first
stage of BigRIPS separator, which consists of two dipole magnets called D1
and D2, slits at F1 and F2, and a wedge-shaped energy degrader at F1.

The magnetic rigidity Bρ can be expressed by the equilibrium between
the Lorentz and centrifugal forces as below:

Bρ =
u

c

A

Ze
βγ, (3.12)

where u is the unified atomic mass unit which is equal to 931.494 MeV/c2,
c is the speed of light, A and Z are the mass number and atomic number of
the objective nuclide, β is a relative speed compared to c, and γ is a Lorentz
factor, respectively. The velocity spread of produced secondary beams is so
small that the magnetic rigidity analyzed at D1 magnet is almost propor-
tional to A/Z:

Bρ1 ∝
A

Z
. (3.13)

After analyzing Bρ1, A/Z of secondary beams can be confined roughly by F1
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slit. Therefore by selecting Bρ1 with F1 slit, A/Z of secondary beams can
be roughly analyzed. However, nuclei which have the same (A/Z)βγ as the
objective nuclide can contaminate by this selection only. Hence, secondary
beams are further purified by the following analysis consisting of the wedge-
shaped degrader and D2 magnet.

The range of charged particle R can be empirically expressed as

R(A,Z,E) = k
A

Z2
Eγ, (3.14)

where A is a mass number, Z an atomic number, E a kinetic energy per
nucleon, and k and γ are constants, respectively. Ranges before (R1) and
after (R2) an energy degrader whose thickness is d have the following relation:

R1 = d+R2. (3.15)

Therefore, the energy after degrader E2(A,Z) can be expressed as

E2(A,Z) = E1(A,Z)

(
1− d

kEγ
1

Z2

A

)1/γ

, (3.16)

where E1(A,Z) is the energy before degrader. Since E1(A,Z) corresponds
to Bρ1 which is confined by Eq. (3.12), E1(A,Z) is given by

E1(A,Z) ≃
1

2
v2 ∝

(
Z

A
Bρ1

)2

. (3.17)

Hence, the following relation between Bρ1 and Bρ2 can be derived as

Bρ2(A,Z) ≃ Bρ1

{
1− d

k′
A2γ−1

Z2γ−2
(Bρ1)

−2γ

}1/2γ

. (3.18)

In other words, Bρ2 depends on A2γ−1/Z2γ−2. Therefore by selecting Bρ2
with F2 slit, secondary beams can be analyzed by A2γ−1/Z2γ−2. In the
present study, an aluminum (Al) wedge-shaped degrader was adopted. Tak-
ing the fact that γ is 1.75 for Al degrader into account, the Bρ1−∆E−Bρ2
method can separate secondary beams depending on A/Z and A2.5/Z1.5.

When we can identify each nuclide in the following second stage in event-
by-event mode, The experimental data for several nuclides can be obtained
in one beam-line setting at the same time by adjusting the width of F1
and F2 slits. In the present study, we utilized such cocktail beams which
contain about five nuclides with sufficient statistics. The schematic diagram
of separation of secondary beams on the nuclear chart is shown with A/Z
and A2.5/Z1.5 separation lines in Fig. 3-9. The red filled region in Fig. 3-9
corresponds to mixing nuclides by utilizing a cocktail beam.
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Figure 3-9: Selection lines optimized for 43Ca on the nuclear chart. By
adjusting the width on F1 and F2 slits, a cocktail beam which contains
nuclei in the red region can be utilized.
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3.4 Particle Identification at 2nd Stage of BigRIPS

After the purification of secondary beams at the first stage of BigRIPS
separator, secondary beams are further identified depending on their Z and
A/Q in event-by-event mode at the second stage which corresponds to the
beam line between F3 and F7. Figure 3-10 shows the schematic configu-
ration of the second stage with installed detectors and the reaction target.
In the present study, the reaction target was installed at F5 which is the
momentum-dispersive focal plane. Therefore, the PID was performed with
detectors between F3 and F5 before the reaction target and between F5 and
F7 after reaction target, respectively. The Bρ − TOF − ∆E method was
adopted in both regions. Three kinds of detectors such as the Parallel Plate
Avalanche Counter (PPAC), Plastic scintillation counter (PL), and Multi-
Sampling ionization chamber (IC) were used in the present study. Table 3-3
shows used detectors for each PID. The information of A/Q and Z can be
derived in the following way.

In order to derive Bρ, we measured the relative magnetic rigidity δ to
that of central trajectory Bρ0 defined as

δ ≡ 100× Bρ−Bρ0
Bρ0

. (3.19)

The magnetic field of dipole magnet was measured directly with the NMR
probe. With the first-order ion optical transfer matrix M , δ can be derived
by the following matrix equation:Xj

Aj

δij

 =

MXX MXA MXδ

MAX MAA MAδ

MδX MδA Mδδ

Xi

Ai

δij

 , (3.20)

where X and A are the position and angle on the horizontal direction,
respectively. The subscripts i, j represent upstream and downstream infor-
mation, respectively. From Eq. 3.20, δij is derived as

δij =
1

MXδ

(Xj −MXXXi −MXAAi) . (3.21)

In order to determine X and A, the beam trajectory is reconstructed by
position information from PPACs installed in each focal plane. We note that
any PPACs were not used after the reaction target shown in Table 3-3 so
as to detect particles with a 100% detection efficiency. For this reason, we
determined only X by F5PL and F7PL which are position sensitive due to
the readout on both sides of the horizontal direction. With ignoring the third
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Figure 3-10: Schematic drawing of the 2nd stage of BigRIPS.
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Table 3-3: Used detectors in order to reconstruct the PID information.

Physical quantity Upstream (F3-F5) Downstream (F5-F7)

Bρ D3+D4 D5+D6
+F3PPAC1/2 +F5PPAC1( or F5PL)

+F5PPAC1(or F5PL) +F7PL

TOF F3PL+F5PL F5PL+F7PL

∆E F3IC F5IC+F7IC

Table 3-4: First-order ion optical transfer matrix between F3 and F5
[BigRIPS4].

MF3F5 X A Y B δ
(/mm) (/mrad) (/mm) (/mrad) (/%)

X (mm) 0.926591 −0.00471245 0 0 31.6690
A (mrad) −0.0196513 1.07932 0 0 −0.0150266
Y (mm) 0 0 1.03406 0.0222120 0
B (mrad) 0 0 0.291468 0.960798 0
δ (%) −0.0361262 1.94078 0 0 78.5482

Table 3-5: First-order ion optical transfer matrix between F5 and F7
[BigRIPS4].

MF5F7 X A Y B δ
(/mm) (/mrad) (/mm) (/mrad) (/%)

X (mm) 1.08043 0.0226346 0 0 −34.1741
A (mrad) −0.0182343 0.925174 0 0 0.654360
Y (mm) 0 0 0.962937 0.0269719 0
B (mrad) 0 0 0.294048 1.03025 0
δ (%) −0.00476105 −1.79602 0 0 78.5442
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term of Eq. (3.21) (described later), δF5F7 is finally given as

δF5F7 =
1

MXδ

(XF7 −MXXXF5) . (3.22)

Tables 3-4 and 3-5 show the first-order ion optical transfer matrix before
and after reaction target, respectively. By using these parameters, each δ is
explicitly given as

δF3F5[%] =
1

31.6690
(XF5[mm]− 0.926591XF3[mm] + 0.00471245AF3[mrad]),

(3.23)

δF5F7[%] = − 1

34.1741
(XF7[mm]− 1.08043XF5[mm]). (3.24)

Considering X and A are the same order of magnitude as ∼ 101, we estimate
the third terms of Eq. (3.20) at 10−2 relative to the leading term which is
small enough to be ignored. Therefore, the approximation of Eq. (3.22) do
not give the fatal influence on the resolution of PID. On the other hand,
since XF5 at the momentum-dispersive focal plane is larger than XF3,F7 at
the achromatic focal plane, Eqs. (3.23) and (3.24) for non-reacting particles
can be reduced to more simple expression as

δ[%] ∼ XF5[mm]

32
. (3.25)

The time of flight TOF is deduced as the difference of timing information
between PLs installed at respective focal planes as follows,

TOF = TPL
j − TPL

i . (3.26)

On the other hand, TOF is represented as

TOF =
L

βc
, (3.27)

where L is a distance between PLs. Therefore, the velocity β is given as

β =
L

TOF · c
, (3.28)

where c is the speed of light.
The energy loss ∆E is measured by ionization chambers. The stopping

power −dE/dx is defined by the Bethe-Bloch formula [LE87]:

− dE

dx
≃ 4πα2ℏ2c2NA

mec2
ρ
Zt

At

Z2
p

β2

[
ln

(
2mec

2β2

I

)
− ln(1− β2)− β2

]
. (3.29)
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Zt : atomic number of the target nucleus
At : mass number of the target nucleus
α : fine structure constant(≡ 1/137)
ρ : target density
NA : Avogadro’s number
me : electron mass (≡ 0.511 MeV/c2)
Zp : atomic number of the projectile nucleus
I : average ionization potential

When −dE/dx is constant in the overall length of detector ∆t, the energy
loss can be expressed as ∆E ∼ (−dE/dx)∆t. In the case of β ≪ 1, the
energy loss depends on ∆E ∝ Z2/β2.

From Eqs. (3.12), (3.19), and (3.28), A/Q can be derived as

A/Q =
c

u

Bρ

βγ

=
c

u
Bρ0

(
1 +

δ

100

) √
1− β2

β
.

(3.30)

On the other hand, the atomic number Z is given from Eq. (3.29) as

Z = C1β

√√√√ ∆E

ln
(

2mec2β2

I

)
− ln(1− β2)− β2

+ C2, (3.31)

where C1 and C2 are constants. Therefore, we can derive A/Q and Z of a
nuclide by the Bρ− TOF −∆E method.

Based on Eqs. (3.30) and (3.31), A/Q and Z depend on respective mea-
sured quantities qualitatively as follows:

A/Q ∝ TOF ·Bρ,
Z ∝ TOF−1 · (∆E)1/2.

(3.32)

Hence, The resolutions for A/Q and Z are approximately given as[
δ(A/Q)

A/Q

]2
=

[
δ(TOF )

TOF

]2
+

[
1

2

δ(∆E)

∆E

]2
, (3.33)

[
δ(Z)

Z

]2
=

[
δ(TOF )

TOF

]2
+

[
δ(Bρ)

Bρ

]2
. (3.34)
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3.5 Beam Line Information

　 In the measurement of σI, all experimental data were obtained in the three
kinds of beam line setting. Secondary beams were produced with the combi-
nation of 345 MeV/nucleon 238U beams and several Be production targets.
In Table 3-6, experimental information for respective beam line settings is
summarized. Since the beam energy between F5 and F7 is different between
target-in and target-out measurements due to the energy loss in the reaction
target, magnetic fields of all the magnets between F5 and F7 including D5
and D6 were optimized so that non-reacted particles located almost the same
position in F7 in both measurements.

Table 3-6: Beam-line parameters

Setting #1 #2 #3

Nuclide

41-43K 44,45K 46-48K
42-44Ca 45-47Ca 48-51Ca
44-46Sc

F0 Production target
1 1 10

Be (mm)

F1 Wedge degrader 5 mm 6 mm 5 mm
Al 5.986 mrad 7.310 mrad 5.986 mrad

Slit (mm)
F1 ±20 +21.4

−50.0 ±50
F2 ±10 ±10 +8

−10

F5 ±110 ±110 ±110

Bρ0 (Tm)

D1 6.3000 6.8000 7.2539
D2 5.9571 6.3931 6.9054

D3 & D4 5.8964 6.3344 6.8445
[F5 target] [In] [Out] [In] [Out] [In] [Out]
D5 & D6 5.2015 5.8233 5.6525 6.2618 6.1812 6.7797
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3.6 Reaction Target

We employed a wedge-shaped carbon (C) target as a reaction target. As
shown in Fig. 3-11, the rectangle-shaped cross section is 310 mm (H) × 80
mm (V). The wedge angle is 9.61 mrad, which results in 8.05 mm, 9.54 mm,
and 11.03 mm target thicknesses at the thinnest, central, and thickest points,
respectively. The F5 focal plane where the reaction target was installed is
the momentum dispersive one. When the appropriate wedge-shaped target
is used, we can maintain the matching between the momentum dispersion
before and after the reaction target. This means that the transmission of
secondary beams to F7 is improved in comparison with using a parallel-plate
target. For this reason, we employed a wedge-shaped target.

The target profile was measured by using a vernier caliper and a scale.
As a result, the profile of target thickness is given by

t(x) = 0.00961(10)x+ 8.047(20) [mm], (3.35)

where x [mm] is a horizontal position from the thinnest point.
The wedged-shaped target was installed on the target ladder as shown in

Fig. 3-12. In addition, so as to calibrate the mount position on the ladder,
we also utilized a parallel-plate C target whose thickness is well known. The
profile of target thickness was measured in more detail by irradiating the
beam. This procedure will be mentioned in Sec. 4.5.

Finally, we consider impurities in the natural C. The natural abundance
of 13C compared to 12C is about 1.07%. The difference of σI for

12C and 13C
on C target is at most a few % (σI of

12,13C+12C at ∼1 GeV/nucleon are
853(6) mb and 862(12) mb, respectively [OZA01]), so that the effect of the
contamination of 13C on σI is negligibly small as 10−2 %. The impurities of
other elements are also sufficiently small as summarized in Table 3-7.

Table 3-7: Amounts of impurities in C target [TA05].

Element Si Mg Fe

Amounts < 5 ppm < 1 ppm < 1 ppm
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Central target thickness
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Figure 3-11: Schematic view of wedge-shaped reaction target.
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Figure 3-12: Reaction targets installed on the target ladder.
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3.7 Detectors

3.7.1 Setup

Detectors were installed in vacuum chambers of F3, F5, and F7, respec-
tively. As an example, the setup in the F5 vacuum chamber is shown in
Fig. 3-13. The geometrical information for respective focal planes is also
shown in Figs. 3-14, 3-15, and 3-16.

990 mm

F5MuSIC

F5PL

Slit
F5PPAC1
(not shown here)

F5PPAC2
(not shown here)

F5 Vacuum Chamber

Beam

Target

Figure 3-13: Setup in the F5 vacuum chamber.
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Figure 3-14: Geometrical information of detectors in the F3 vacuum chamber
[BigRIPS5].
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Figure 3-16: Geometrical information of detectors in the F7 vacuum chamber
[BigRIPS5].
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3.7.2 Plastic Scintillation Counter (PL)

Plastic scintillation counters (PL) were used in order to measure TOF . Pho-
tomultiplier tubes (PMT) were mounted on both sides of the horizontal di-
rection with the BC-630 optical grease. The light shielding was not necessary
because it was quite dark in the vacuum chamber. Since the readout was
performed from both sides, we can obtain timing and energy information
without depending on the beam position. In addition, the horizontal po-
sition information can be obtained from the time difference as well as the
ratio of charge information obtained from both PMTs. The specifications of
PMTs and scintillators are summarized in Tables 3-8 and 3-8, respectively.

Table 3-8: Specification of PMT (HAMAMATSU R2083).

R2083

Diameter 51 mm
Photocathode material Bialkali

Spectral response
300 to 650 nm
(Peak: 420 nm)

Dynode structure Line-focused type
Dynode stages 8

Anode to cathode voltage < −3000 V
Gain 2.5× 106

Rise time 0.7 ns
Transit time 16 ns

Transit time spread 0.37 ns

200 mm

Figure 3-17: Picture of F5PL.
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Table 3-9: Specification of Scintillators.

F3PL F5PL and F7PL

Size
100 mm (W) 200 mm (W)
× 100 mm (H) × 100 mm (H)

Thickness (mm) 0.5 mm 0.5 mm

Type EJ-230 EJ-212

Wavelength (mm) 391 423
Decay constant (ns) 1.5 2.4

Light output
64 65

(% anthracene)
Attenuation length (cm) 120 250
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3.7.3 Multi-Sampling Ionization Chamber (IC)

We used ionization chambers (IC) to measure ∆E for the derivation of
an atomic number Z. Although a silicon (Si) detector is also one of the
candidates as an energy loss detector, the analysis is complicated in terms of
channeling effects [TA15]. The development of a large-size IC is not so diffi-
cult compared to a large Si detector, so that making use of IC is much better
especially at F5 and F7 where the beam profile is spread. The ICs used in
F5 and F7 are multi-sampling ionization chambers (MuSIC). In contrast, IC
installed in F3 is a tilted electrode gas ionization chamber (TEGIC). Tilted
electrodes result in different drift paths for produced electrons and ions, re-
spectively. Consequently, the electron-ion recombination is suppressed, which
contributes to the improvement of the energy resolution. The electrodes of
F3IC is tilted as 30 degrees as shown in Fig. 3-18. The ICs are filled with P10
gas which consists of 90% Argon and 10% methane CH4 and is circulated.
Specifications of ICs are summarized in Table 3-10 [KA16, BigRIPS5].

Table 3-10: Specification of IC.

F3IC F5IC F7IC

Effective length 480 mm 200 mm 480 mm

Sensitive area 120 mmφ
240 mm (W)

240 mmφ×150 mm (H)
Number of anodes 13 5 13
Number of cathodes 12 6 12
Electrode interval 20 mm 20 mm 17 mm
Number of outputs 6 5 6

Window Capton 125 µmt SUS 100 µmt Capton 125 µmt
Supplied voltage +400 V +400 V +550 V
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Figure 3-18: Electrode structure of F3IC (TEGIC-type IC).

Figure 3-19: Electrode structure of F5IC (MuSIC-type IC).
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3.7.4 Parallel Plate Avalanche Counter (PPAC)

Two parallel plate avalanche counters (PPAC) were installed at respective
focal planes in order to reconstruct the beam trajectory. In particular, the
F3PPACs were also utilized in order to confine the emittance of secondary
beams. Figure 3-20 shows a schematic view of PPAC [KU13]. The effective
thickness of PPAC is approximately 1/10 times thinner as ∼ 30 mg/cm2

than other position sensitive detectors, so that the PPAC hardly influence
the transportation of RI beams.

The readout method of PPAC used in the present experiment is a delay-
line type. The delay line PPAC consists of an anode electrode located be-
tween two cathode electrodes which divide into 2 mm strips along horizontal
or vertical directions. The position information is obtained through the time
difference between output signals from both sides of the delay line to which
respective cathode strips are connected. The delay-line PPAC can be oper-
ated with high intense RI beams compared to a charge-division one. More-
over, we can remove the effects of multiple-hit events and δ rays. In order
to reconstruct the beam trajectory with high detection efficiency, we used a
double PPAC which has two full PPACs in a chamber of double PPAC itself.
When either PPAC in a double PPAC is fired, we can obtain the position
information. A perfluoropropane (C3F8) was adopted as a counter gas.

Figure 3-20: Schematic view of PPAC [KU13]. This figure is taken from Ref.
[KU13].

65



3.8 Data Acquisition System (DAQ)

Output signals from respective detectors were processed by the NIM circuit
[Circuit], then processed signals were converted to digital data by CAMAC
and VME modules. The data acquisition (DAQ) was operated with the
Babirl software package [RIBFDAQ]. The trigger signal is the coincidence
signal between F3PL and F5PL. The coincidence timing is always determined
by the output signal from left part of F3PL.

Not all events are acquired because of the dead time of DAQ. The acquired
event rate nacq is given by the following equation:

nacq =
nbeam

1 + nbeamτ
, (3.36)

where nbeam is a beam intensity and τ is a dead time per event, respectively.
Figure. 3-21 shows correlations between nbeam and nacq for respective dead
times. The dead time is about 0.2 ms for the present experiment. Present
experiments were performed with about 3 kcps beams in order to avoid pile-
up events, which corresponds to approximately 60% DAQ efficiency.
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Figure 3-21: Correlation between the beam intensity nbeam and data acqui-
sition rate nacq.
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4 Data Analysis

4.1 Analysis Before Reaction Target

For most of the Ca isotopes, the enough statistics which corresponds to the
order of 10−3 statistical error on σI were acquired. Therefore, in the analysis
before the reaction target, we aimed to achieve a relatively severe condition
in terms of following points:

• Almost no contaminants (<∼ 10−4)

• Almost no pileup events (<∼ 10−4)

In the particle selection before reaction target, we adopted following gates.

Pileup rejection
Gate#1 : Multiplicity = 1

or
Multiplicity = 2 with |tMHTDC(F3PL)| > 14.5 µs

Background removal

Gate#2 : XQ
PL −XT

PL of F3PL

Gate#3 : XQ
PL −XT

PL of F5PL
Gate#4 : ∆EF3PL vs. ZF3IC

Gate#5 : ZF3IC vs. ∆EF5PL

Particle identification
Gate#6 : A/QF3F5 vs. ZF3IC

Contamination removal

Gate#7 : ∆EF3PL+F5PL vs. ZF3IC(A/QF3F5 − 2).

In the following subsections, we describe the above gates and conditions in
detail.

4.1.1 Pileup Rejection

When incident particles contain pileup events, the result of cross section is
affected directly because these events behave like other nuclides in the PID
plot after reaction target. In particular, the pileup of signals from ICs are
the main problem due to their own slow response. In order to discriminate
pileup events, we utilized timing signals of F3PL acquired in a multi-hit time
to digital Converter (MHTDC), which records timing information of plural
signals per one trigger event. The MHTDC was configured to record signals
within ±20 µs relative to the trigger signal.
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Figure 4-1: Multiplicity in F3PL.

Figure 4-1 shows the multiplicity of F3PL per one event. Single-hit events
occupy the 90% of all. Then, for double-hit events (Multiplicity = 2), which
corresponds to ∼ 10% of all events, we confirm correlations between the
timing information of F3PL acquired with the MHTDC tMHTDC(F3PL) and
energy loss ∆E in (a) F3IC, (b) F5IC, and (c) F7IC shown in Fig. 4-2.
In these figures, ∆E are plotted as functions of time tMTDC(F3PL), where
event corresponding to the trigger itself is located at tMHTDC(F3PL) = 0
µs. The spectrum shape depends on the time constant of shaping amplifier
used for ICs. Around tMHTDC(F3PL) = 0, a larger ∆E which depends on
tMHTDC(F3PL) results from pileup of double pulses. The effect of pileup is
also seen in the circle regions in Fig. 4-2.

In order to avoid these pileup events, we select events within |tMHTDC(F3PL)| >
14.5 µs for Multiplicity = 2. Single-hit events (Multiplicity = 1) as shown
in Fig. 4-2(d) are used without any restrictions in tMHTDC(F3PL). We did
not use multi-hit events more than triple particles, of which the ratio to all
events is less than 0.5%.
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Figure 4-2: Correlations between tMHTDC(F3PL) and Energy loss ∆E in
(a) F3IC, (b) F5IC, and (c) F7IC, respectively. In Figs (a)-(c), events for
only Multiplicity = 2 are plotted. As a comparison, correlation between
tMHTDC(F3PL) and Energy loss ∆E in F3IC for only Multiplicity = 1 is shown
in Fig. (d). For Multiplicity = 2, The region outside red lines corresponds
to non-pileup events. In the case of single-hit events (Multiplicity = 1), all
events are used.
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4.1.2 Background Removal

Correlation between Q and T in F3PL and F5PL
The validity of output signals for F3PL and F5PL can be distinguished from

the correlation between charge and timing information. The time difference
between left and right outputs of plastic scintillation counter PL T L

PL − TR
PL

enables us to derive the horizontal incident position XT
PL as

XT
PL ∝

(
T L
PL − TR

PL

)
. (4.1)

On the other hand, emitted scintillation lights are attenuated depending on
the distance between the incident horizontal position X and each PMT:

QL
PL ∝ exp

(
−L/2−X

λ

)
, (4.2)

QR
PL ∝ exp

(
−L/2 +X

λ

)
, (4.3)

XQ
PL ∝ ln

(
QL

PL

QR
PL

,

)
(4.4)

where L is a length of scintillator along the horizontal direction, λ the atten-
uation length, QL

PL and QR
PL the charge information from respective PMTs.

Therefore, we can also derive the position XQ
PL from the charge information.

We selected valid outputs for F3PL and F5PL in one-dimensional XQ
PL−XT

PL

spectrum as shown in 4-3, which is a condition that XQ
PL and XT

PL are consis-
tently in agreement with each other. Selection gates are labeled as “gate#2”
for F3PL and “gate#3” for F5PL, respectively.
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The two-dimensional plot of XQ
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PL. Black dots represent raw data,

while color dots correspond to data within the red filling region in the left
histogram.
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Figure 4-4: The same figures as Fig. 4-3 for F5PL. The red filled region
represents the selected region (gate#3 ).
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∆E vs ∆E correlation
At upper reaches of the reaction target, particles reacting in detectors

can be eliminated by the correlation of energy losses in F3PL ∆EF3PL, F3IC
∆EF3IC, and F5PL ∆EF5PL. Non-reacted particles were selected by setting
proper gates on ∆E vs. ∆E spectra. As shown in Fig. 4-5, the “gate#4”
was set in the correlation between ∆EF3PL and the atomic number ZF3IC

reconstructed from ∆EF3IC. The set gate “gate#5” is shown in Fig. 4-6,
which is the two-dimensional spectrum of ZF3IC and ∆EF5PL.
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Figure 4-5: Correlation between ∆EF3PL and ZF3IC (left) without any gates
and (right) with gate#1, gate#2, and gate#3.
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4.1.3 Particle Selection in A/QF3F5 vs ZF3IC Spectrum

Set gates gate#1 - gate#5 purify the PID plot as shown in Fig. 4-7.
Finally, we selected incoming particles in this spectrum. The analysis of
each nuclide is the same manner. Hence, we explain the analysis for 43Ca as
an example.
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Figure 4-7: PID plots in F3-F5 (upper left) without any gates, (upper right)
with only the pileup rejection gate#1, and (lower left) with the pileup and
background rejection gate#1 - gate#5 .
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Resolution of A/QF3F5 and ZF3IC

In Fig. 4-8, we show the PID plot around 43Ca with gate#1 - gate#5.
In order to confirm resolutions of A/QF3F5 and ZF3IC, events within red
dotted lines shown in Fig. 4-8 are projected onto A/Q axis and within black
dotted lines onto Z one, respectively. Nuclides are separated with excellent
resolutions as 19.2σ on A/QF3F5 and 6.5σ on ZF3IC as shown in Fig. 4-9.
Then, incident particles were selected in the PID plot with the selection gate
“gate#6” shown by the red bold line in Fig. 4-8. We adopted an ellipse-
shaped gate, which can be treated quantitatively with its central value and
width in unit of the standard deviation. The width of gate#6 is 3.5σ, which
corresponds to the inclusion of 99.7% events of two-dimensional Gaussian
distribution.

F3F5
A/Q

2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22

F3
IC

Z

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

1

10

210

43Ca42Ca 44Ca

45Sc44Sc 46Sc

41K40K 42K

gate#6

Figure 4-8: PID plots around 43Ca with gate#1 - gate#5.
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Figure 4-9: One dimensional histograms of (left) A/QF3F5 and (right) ZF3IC

around 43Ca.

In order to estimate the amount of contamination from neighboring nu-
clides, 41K and 45Sc, into the gate#6, we generated simulated events with the
Monte Carlo method which reproduce respective positions and their widths
as well as the ratio of respective events to objective nuclide 43Ca. Figure 4-10
shows the simulated distributions of 41K and 45Sc together with the gate#6.
The amount of these contaminants in the gate#6 is estimated as approxi-
mately ∼ 2× 10−2 % relative to 43Ca, which is sufficiently small. Moreover,
we also reduce these contaminants by utilizing the following procedure.

Removal of Contaminations from Neighboring Nuclei

Although there is a well separation along the ZF3IC axis, ACa can be con-
taminated with A+2Sc and A−2K especially near A/Q = 2. Therefore, the sum
of energy losses in F3PL and F5PL, ∆EF3PL+F5PL, was utilized so as to elim-
inate these contaminants as much as possible. In order to confirm respective
distributions of 41K and 45Sc in the ∆EF3PL+F5PL spectrum, their own atomic
number was identified in more detail with the help of ZF7IC shown in Fig. 4-11.
We mention that this identification is not used to select incoming particles
but only utilized confirming the distributions of contaminants. Figure 4-13
shows the correlation between ∆EF3PL+F5PL and ZF3IC(−A/QF3F5 + 3), on
which 43Ca and its neighboring nuclides are the most separated as shown
in Fig. 4-12. In Fig. 4-13, color dots represent events located within the
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Figure 4-10: Simulated distributions of 41K and 45Sc.

ellipse-shaped gate shown in Fig. 4-9, while black dots are ones with ad-
ditional selection shown in Fig. 4-11. Though slight contaminants exist in
color dots, these can be removed by proper two-dimensional gates labeled as
“gate#7” (events selected with this gate were eliminated.) without a large
lack of objective nuclide. In the case of 43Ca, the ratio of contaminants to
objective nuclide is approximately ∼ 2× 10−2% without gate#7 , which cor-
responds to ∼ 1/5 compared to its statistical error. In addition, this effect
can be reduced to less than ∼ 1/10 with the gate#7 , then this contribution
can be ignored. Similarly, the effect of contamination can be canceled by
the target-out measurement as far as production cross sections of objective
nuclide from its contaminants are negligibly small.
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4.2 Analysis after Reaction Target

Figure 4-14 shows the PID plots between F5 and F7 with and without
selecting the incident nuclide. The downstream PID has also sufficiently
good separation as 16.2σ in A/QF5F7 and 6.5σ in ZF7IC shown in Fig. 4-15,
respectively. In order to distinguish the non-nuclide-changing particles from
reaction products, we performed the identification procedures described in
the following subsections with adopting DownStream gates labeled “#DS”.
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Figure 4-14: Downstream PID plots with (a) gate#1 -gate#5 and (b)
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4.2.1 Identification of Z

The atomic number Z after reaction target was identified from the energy
losses in F5IC ∆EF5IC and F7IC ∆EF7IC. The correlation between ZF5IC and
ZF7IC is shown in Fig. 4-16.

The DS#1 events located within the red ellipse shown in Fig. 4-16 are
identified as non-charge-changing particles in the target by both of F5IC
and F7IC. In the analysis of σI, only DS#1 events are treated as non-
charge-changing event, which are distinguished whether their own mass A
was changed or not in the following procedure mentioned in Sec. 4.2.2. The
width of DS#1 is 3.9σ of distributions on respective axes, which corresponds
to the inclusion of 99.95% events of two-dimensional Gaussian distribution.
The events within blue lines labeled as DS#2 are certainly identified as non-
charge-changing events in F5IC, while not in F7IC. These events correspond
to reaction ones mainly in F7IC. The ratio of DS#2 to DS#1 is about 0.5%,
which is consistent to the reaction rate in F7IC estimated by the LISE++
code.
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Figure 4-16: Correlation between ZF5IC and ZF7IC.
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4.2.2 Identification of A/Q

The identifications for DS#1 events were performed in regard not only
to Z but also to A/Q. Fig. 4-17 provides the correlation between A/QF5F7

and ∆EF7PL for DS#1 events. In the case of 43Ca, non-nuclide-changing
events are forming a peak around A/QF5F7 = 2.15. The top and bottom tails
of non-nuclide-changing events corresponds to reaction ones in F7PL, where
the reaction rate is about 0.4%. Events which locate around A/QF5F7 = 2.15
can be certainly identified as non-nuclide-changing ones whether particles
are reacted in F7PL or not. Therefore, both of DS#3 and DS#4 events as
shown in Fig. 4-17 were treated as non-reacted particles for the analysis of
σI.

In principle, the A/QF5F7 do not depend on ∆EF7PL. However, in some
cases, the events whose ∆EF7PL are small have slightly larger A/QF5F7 due
to the F7PL pulse height dependence on A/QF5F7. Hence, we used a rectan-
gle or two dimensional proper gate to count non-nuclide-changing particles
depending on their ∆EF7PL for less ambiguous counting. A rectangle gate
whose width is about 6σ of A/QF5F7 distribution was adopted for the main
component of non-nuclide-changing particles labeled as “DS#3”, while a
proper two-dimensional gate for reaction events in F7PL labeled as “DS#4”
was also added. The amount of DS#4 is about 0.1% compared to that of
DS#3.

81



F5
7

A/
Q

2.
00

2.
05

2.
10

2.
15

2.
20

2.
25

 (ch) F7PL E∆

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

110

2
10

F5
7

A/
Q

2.
00

2.
05

2.
10

2.
15

2.
20

2.
25

 (ch) F7PL E∆

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

110

2
10

D
S#
3

43
C
a

42
C
a

44
C
a

D
S#
4

43
C
a

Figure 4-17: Correlation between A/QF5F7 and ∆EF7PL for DS#1 events.
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4.3 Target-Out Measurement

Target-out measurements were performed with the same condition as
target-in ones except for the Bρ0 configuration after reaction target. In the
target-out measurements, downstream dipole magnets were adjusted as re-
producing almost the same horizontal beam profile for non-nuclide-changing
particles as the ones for target-in measurements. Hence, the incident parti-
cles were selected in exactly the same manner.

In the downstream identification, almost the same-shaped gates as target-
in analysis were employed with a slight change on the width of gates. The
widths of employed gates in target-out measurements are the same as those
of target-in measurements in unit of σ of respective distributions, which
means the absolute widths are slightly different between the target-in and
-out measurements.
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Figure 4-18: The same plot as Fig. 4-16 for the target-out measurement.
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Figure 4-19: The same plot as Fig. 4-17 for the target-out measurement.
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4.4 Emittance Cut

Although the BigRIPS separator has large angular and momentum ac-
ceptances, not all non-reacted-particles near the border of acceptance can be
transported to F7. Therefore, in order to select fully transported particles,
we confined the emittance of incident particles by using the information of
position, angle, and momentum obtained from detectors before the reaction
target. Specifically, the following quantities are confined from the dependence
of the non-reaction rate R on them:

XF3 : horizontal position at F3,
YF3 : vertical position at F3,
AF3 : horizontal angle at F3,
BF3 : vertical angle at F3,
XF5 : horizontal position at F5,

(XF5 corresponds to the momentum.)

R =
N2

N1

, (4.5)

where N1 and N2 are the number of incident and non-reacted particles, re-
spectively.

In Figs. 4-20, 4-21, 4-22, 4-23, and 4-24, we show the dependences of R
on XF3, YF3, AF3, BF3, and XF5, respectively. The dependence of R on one
quantity is examined with restrictions on the others adopted. The uniform
component of non-reaction rate distribution can be considered as the fully
transmitted part. In the non-reaction rate distributions on XF3, YF3, AF3,
and BF3, the constant components shown by the red circles in Figs. 4-20-
4-23 were selected to analyze. On the other hand, the dependence on XF5

shown in 4-24 has not a constant but a slightly tilted component owing to
the usage of wedge-shaped reaction target. When the thickness of reaction
target is written by t = t0+ aXF5, the non-reaction rate R can be written as

R = 1− σI(t0 + aXF5)

= (1− σIt0)− σIaXF5

= R0 − a

(
1−R0

t0

)
XF5,

(4.6)

with
R0 ≡ 1− σIt0. (4.7)

the slope of non-reaction rate shown in Fig. 4-24 is consistent with the angle
of reaction target. Therefore, the component followed with the red line shown
in Fig. 4-24 was selected as the fully transported region. The same emittance
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cut determined by the above procedure was adopted both in target-in and
target-out measurements.
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Figure 4-20: Dependence of R on XF3.
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Figure 4-21: Dependence of R on YF3.
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Figure 4-22: Dependence of R on AF3.
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Figure 4-23: Dependence of R on BF3.
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Figure 4-24: Dependence of R on XF5.
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4.5 Determination of Target Profile

As mentioned in 3.6, we employed a wedge-shaped C target as a reaction
target installed at F5. Though the thickness of reaction target has been
measured as

tmeas
wedge(x) = 1.7995(6) + 0.00181(2)x [g/cm2], (4.8)

the actual thickness of the target as a function of horizontal position at F5
tmeas
wedge(XF5) also depends on the mount position onto target-ladder. There-
fore, we determined tmeas

wedge(XF5) from the comparison with the parallel-plate
C target in terms of BρF5F7 information. The target thickness of parallel-
plate target has been also measured as

tmeas
parallel = 1.8066(6) [g/cm2]. (4.9)

Figure 4-25 shows the measured BρF5F7 distribution with respective targets
with the same beam condition as a function of XF5. Since the crosspoint
of respective data shown in Fig. 4-25 corresponds to the point of the same
target thickness, we can derive twedgemeas (XF5) from this crosspoint in harmony
with Eq. 4.8 as

tmeas
wedge(XF5) = 1.8039(12) + 0.00181(2)XF5 [g/cm2]. (4.10)

On the other hand, as shown in Fig. 4-25, there is a slight nonuniformity
on BρF5F7(XF5) distribution for the wedge-shaped target, which results from
the nonuniformity of target thickness compared to one given by Eq. (4.10).
This nonuniformity corresponds to the approximately 0.25% deviation in
unit of g/cm2 from Eq. (4.10). If we use Eq. (4.10) as a function of target
thickness, this deviation have to be taken into account as a systematic error.
Therefore, in order to avoid this systematic error, we utilized the distribu-
tion of target thickness, twedge(XF5) directly derived from the BρF5F7(XF5)
distribution in accordance with the following equation:(
twedge(XF5)

tmeas
wedge(XF5)

− 1

)
:

(
Bρwedge(XF5)

Bρfitwedge(XF5)
− 1

)
=

∣∣∣∣∣tmeas
wedge(XF5)

tmeas
parallel

− 1

∣∣∣∣∣ : −
∣∣∣∣∣ Bρfitwedge(XF5)

Bρfitparallel(XF5)
− 1

∣∣∣∣∣,

twedge(XF5) = tmeas
wedge(XF5)

1−
∣∣∣∣∣tmeas

wedge(XF5)

tmeas
parallel

− 1

∣∣∣∣∣∣∣∣∣∣ Bρfitwedge(XF5)

Bρfitparallel(XF5)
− 1

∣∣∣∣∣
(
Bρwedge(XF5)

Bρfitwedge(XF5)
− 1

) ,
(4.11)
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Figure 4-25: Correlations between BρF5F7 and XF5 for wedge-shaped (red)
and parallel-plate (black) targets, respectively. The fitting lines with linear
functions are also shown.

Bρfitwedge(XF5) : best-fit function to BρF5F7,wedge(XF5)
shown by the red line in the left part of Fig. 4-25,

Bρfitparallel(XF5) : best-fit function to BρF5F7,parallel(XF5)
shown by the black line in the left part of Fig. 4-25,

Bρexpwedge(XF5) : experimental BρF5F7(XF5) distribution

shown by the red circles in the left part of Fig. 4-25.

The obtained distribution of wedge-shaped target thickness is shown in Fig. 4-
26. In the present study, we employed this target thickness distribution in
order to derive σI. The error of target thickness in each point is at most
0.15%, which is much smaller in comparison with the most precise statistical
error in the present study of approximately 0.5%.
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Figure 4-26: Obtained target thickness of wedge-shaped target from Bρ(XF5)
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4.6 Estimation of Systematic Error

In addition to the uncertainty of target thickness as mentioned in Sec.
4.5, the systematic error was considered in terms of the following points.
As a result, the systematic error of 0.36% resulting from the width of the
ellipse-shaped gate for DS#1 and that of 0.15% from the target thickness
were explicitly taken into account.

4.6.1 Dependence of Gate Width

As mentioned in the previous subsections, the almost all adopted gates
are parametrized by the center position and the width. In order to estimate
the systematic error resulting from the employed gates, we derived σI by
changing the width of each set gate.

First, in order to confirm the validity of gate#6 which is for selecting
incoming particles in the upstream PID plot, we derive σI by changing the
gate width. In this procedure, the gate width was changed in both target-in
and target-out measurements simultaneously. Fig. 4-27 shows the gate width
dependence of σI for gate#6. The employed gate represented by the red circle
(3.5σ) is almost in the middle of constant region. The employed gate was
also exactly the same between the target-in and target-out measurements, so
that several contamination effects not only of neighboring nuclides but also
of uniform backgrounds are canceled in principle.

Next, we confirm the gate width dependence of DS#1 which is for se-
lecting non-charge-changing particles in the correlation between ZF5IC and
ZF7IC. As already mentioned in Sec. 4.3, the widths of adopted gates are
the same in unit of σ in both target-in and target-out measurements (3.9σ).
However, if uniform backgrounds exist, the effect of background cannot be
canceled due to the different absolute widths for target-in and target-out
measurements. Therefore, in order to estimate this effect, we derived σI by
employing the exactly the same width in unit of absolute value for both
measurements. In the present analysis, the absolute gate width for DS#1 of
the target-out measurement is larger compared to that of the target-in one.
In the case of target-in measurement, the gate width which corresponds to
the absolute gate width of the target-out measurement is 4.3σ in unit of σ.
Figure 4-28 shows the correlation between ZF5IC and ZF7IC for the target-in
measurement of 43Ca together with the gates whose widths are 3.9σ and 4.3σ,
respectively. The 4.3σ width gate results in the σI change of 7 mb, which
corresponds to the relative error of 0.36%. This was regarded as an estimate
of the systematic error.
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4.6.2 Emittance Cut Dependence

The emittance cut mentioned in Sec. 4.4 was adopted to select the constant
component in the non-reaction rate R distribution. In order to consider the
systematic error resulting from the condition of emittance cut, as an example,
we confirmed the XF3 dependence of R for the target-in measurement of
43Ca shown in Fig. 4-29. In Fig. 4-29, the average R and the standard
deviation of selected data (red circles) around the average R are shown by
the red line and the orange shaded band, respectively. We compare the
standard deviation for each quantity utilized in the emittance cut procedure
(XF3, YF3, AF3, BF3, and XF5) to the statistical one. As shown in Fig. 4-30,
these standard deviations are consistent with the statistical error in both
cases of target-in (black) and target-out (blue) measurements. Therefore,
we interpreted that the systematic error resulting from the emittance cut is
negligibly small compared to the statistical one. Moreover, we also derived
σI with changing the widths of emittance cut, δw, in both target-in and
target-out measurements simultaneously like xmin − δw < XF3 < xmax + δw,
where xmin and xmax represent the lower and upper limits of emittance cut,
respectively. The σI without δw fulfills the enough severe condition not to be
affected by the widths of emittance cuts. For this reason, we did not consider
the systematic error resulting from the emittance cut.
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Figure 4-29: Dependence of R on XF3 for the target-in measurement of 43Ca.
Red symbols represent the selected data by the emittance cut.
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measurements for 43Ca. The statistical errors are also shown by the solid
and dotted lines for target-in and target-out measurements, respectively.

4.6.3 Multiple Scattering

Although the condition of emittance cut for the target-in measurement
is the exact same as for the target-out one, the effect of multiple scattering
in the reaction target only exists in the target-in measurement. Therefore,
the horizontal and vertical angular distributions after the reaction target of
the target-in measurement can spread compared to those of target-out one.
In the condition that the multiple scattering results from the superposition
of only the small angle (< 10◦) single Coulomb scattering, the angular dis-
tribution can be expressed by the Gaussian distribution [LE87]. The RMS
scattering angle of the angular distribution due to the multiple scattering in
the perpendicular plane to the beam axis σmult can be obtained by using the
empirical formula [HI75]:

σmult[rad] =
1√
2
ZT20[MeV/c]

pβ

√
x

L

[
1 +

1

9
log10

(x
L

)]
, (4.12)

where ZT is an atomic number of target nucleus, p and β the momentum
and the velocity of projectile nucleus, x the target thickness, and L the
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Figure 4-31: Dependences of σI for
43Ca on the width change of emittance

cuts, δw, like xmin − δw < XF3 < xmax + δw, where xmin and xmax represent
the lower and upper limits of emittance cut respectively. The black shaded
bands represent the error of σI without δw.
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Figure 4-32: Normalized (a) horizontal and (b) vertical angular distributions
in F7 whose integrations are equal to 1 for the target-in (red lines) and -
out (black lines) measurements, respectively. The angular acceptances of the
BigRIPS separator which are ±40 mrad (horizontal) and ±50 mrad(vertical)
are also shown by shaded regions.

radiation length of target material, respectively. In the case of 43Ca with
the combination of 310.5 MeV/nucleon incident energy and 1.821 g/cm2 C
reaction target, σmult due to the multiple scattering in the reaction target is
estimated as 2.3 mrad, which is much small compared to the angular spread
of the incident beams. Figure 4-32 shows the normalized (a) horizontal and
(b) vertical angular distributions at F7 whose integrations are equal to 1 for
the target-in (red lines) and target-out (black lines) measurements together
with the angular acceptances of the BigRIPS separator (shaded region) which
are ±40 mrad (horizontal) and ±50 mrad (vertical), respectively. In these
distributions, the emittance cut was adopted. Though the distributions of
the target-in measurement spread slightly compared to those of the target-
out one due to the multiple scattering, respective distributions fall within
the angular acceptances with the order of less than 10−5, which corresponds
to 10−2 % relative error of σI. Therefore, the effect of multiple scattering is
also negligibly small.

4.6.4 Reproducibility of Beam Profile in F7 between Target-in
and Target-out Measurements

As mentioned in Sec. 3.5, the beam energy after the reaction target is dif-
ferent between target-in and target-out measurements because of the energy
loss in the reaction target. Though the magnetic fields of all the magnets
between F5 and F7 were optimized so that the beam profile of non-nuclide-
changing particles located almost the same position in F7 in both target-in
and target-out measurements, the profile was not extremely the same in both
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measurements. Hence, we confirm the distribution of relative momentum to
that of central trajectory Bρ0 between F5 and F7 δF5F7. Figure 4-33 shows
the normalized δF5F7 distributions of (a)

42Ca, (b) 43Ca, and (c) 44Ca in both
measurements. The experimental data for these nuclides were obtained in
the same beam line setting. In this beam line setting, the magnetic fields
were optimized for 43Ca, that is, 43Ca locates around δF5F7 ∼ 0% in both
measurements. As can be seen in Fig. 4-33, in the case of 43Ca, the relative
momentum distribution of target-in measurement spreads slightly due to the
energy straggling in the reaction target (this is estimated as approximately
0.04% in unit of δF5F7). However, even by taking this slight difference be-
tween both measurements into consideration, both distributions fall within
the limited momentum acceptance of the BigRIPS separator (±3%) shown by
shaded region. In the case of 42Ca and 44Ca, though the relative momentum
distributions in the target-in measurement shift from the center of δF5F7 due
to the mass number dependence of energy loss in the reaction target, these
distributions also fall with in the ±3 % acceptance. The reproducibility of
the beam profile after the reaction target between target-in and target-out
measurements fulfills with the quite sufficient level, so that the systematic
error due to this effect can be also ignored.
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Figure 4-33: Normalized δF5F7 distributions of (a) 42Ca, (b) 43Ca, and (c)
44Ca for target-in (red lines) and target-out (black lines) measurements, re-
spectively. The momentum acceptance of the BigRIPS separator (±3 %) is
also shown by the shaded region in each figure.
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4.6.5 Large-Angle Scattering via Elastic Process

If the elastic scattering with the large angle which is beyond the angular
acceptance occurs in the reaction target, such events which have to be treated
as non-nuclide-changing particles behave like reaction ones in the downstream
PID. In the case of 310.5 MeV/nucleon 43Ca beams with C target, the grazing
angle θgr is about θgr ≃ 1.6 mrad in the laboratory frame, which is much
smaller than the angular acceptance. Therefore, the escaping particles from
the angular acceptance of the BigRIPS separator via the elastic scattering
process are due to the strong interaction. In the present study, the 40 mrad
angular acceptance corresponds to the momentum transfer of q ∼ 6.8 fm−1.
As an example, Fig. 4-34 shows the calculated ratio of elastic scattering
cross section to Rutherford scattering one dσ/dσRuth. of

70Ca on 40Ca target
at several energies (100, 200, 300, and 400 MeV/nucleon) by T. Furumoto
et al. [FU12] as a function of q. Though the combination of projectile and
target nuclei is different from the present study, the following conclusion is
not changed. From this figure, in q > 6.8 fm−1, the order of dσ/dσRuth. is
approximately 10−6. The integrated Rutherford scattering cross section in
q > 6.8 fm−1 is estimated as ∼ 4 mb, so that the corresponding integrated
elastic scattering cross section is less than ∼ 10−6 mb. Therefore, this process
does not influence in the present study.

4.6.6 Charge State

The different charge-state particles of the same nuclide locate different
positions in the PID plot. In the following, only the hydrogen-like state is
considered because the ratio of more-electron-capturing state is obviously
negligibly small. In the present experiment, the magnetic field of the whole
of the beam line was optimized for the fully-stripped particles (Q = +20
for Ca isotopes). In the case of Ca isotopes, the difference of momentum δ
(magnetic rigidity) between the fully-stripped and hydrogen-like (Q = +19
for Ca isotopes) particles is about 5.3%, so that the hydrogen-like ones cannot
transmit to F7 due to the limited momentum acceptance (±3 %). For this
reason, if the contribution of charge state distribution is different between
target-in and target-out measurements, the derivation of σI can be influenced.

In the target-in measurement, the condition of the equilibrium charge-
state distribution was fulfilled in F5 because the thick reaction target was
installed. On the other hand, if the material thickness of detectors in F5 is
quite thin, all particles have a fully-stripped charge state because only the
fully-stripped particles can transmit from F3 to F5. In that case, non-fully-
stripped particles cannot transmit to F7 only in the target-in measurement.
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×10−6

Figure 4-34: Calculated dσ/dσRuth. of
70Ca on 40Ca target at several energies

(100, 200, 300, and 400 MeV/nucleon) by using as a function of q [FU12].
In q > 6.8 fm−1, dσ/dσRuth. reduces approximately ∼ 10−6. (This figure is
taken from Ref. [FU12] with the slight modification.)
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However, while the target was not installed in the target-out measurement,
the window of F5IC which is the thickest material besides the reaction target
in F5 is also enough thick compared to the equilibrium thickness of stainless
steel (material of F5IC window). Therefore, the equilibrium condition was
fulfilled in both measurements.

Meanwhile, if the charge-state distribution has an energy dependence,
the ratio of hydrogen-like state to fully-stripped one is different between
both measurements. According to the GLOBAL [SC98] which is a simula-
tion program for the charge-state distribution, the ratios of fully-stripped
particles after the reaction target are 99.988% and 99.991% in the target-
in and target-out measurements, respectively. This difference results in just
∼0.003% reduction of σI. As a result, the effect of non-fully-stripped particles
is not influenced in the present study.
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4.7 Derivation of Interaction Cross Section

In the σI measurements with a target whose thickness is not constant, σI
can be strictly derived as

σI =

∫
N(x)

[
−1

t(x)
lnR(x)

]
dx∫

N(x)dx

≡ ⟨ −1

t(x)
lnR(x)⟩,

(4.13)

where t(x) is the target profile, R(x) the non-reaction rate distribution, and
N(x) the beam profile along the horizontal axis x, respectively. In terms of
convenience, this equation can be also reduced within less than 10−4 discrep-
ancy from Eq. (4.13) as (see Appendix A for details)

σI =
−1

⟨t(x)⟩
ln⟨R(x)⟩. (4.14)

In the present study with ∼ 0.1% precisions, both equations Eqs. (4.13)
and (4.14) can be employed. Therefore, we utilized Eq. (4.14) which is
more easily usable form in order to derive σI. The weighted mean of target
thickness ⟨t(x)⟩ on the horizontal beam profile at F5, N(XF5), is summarized
in Fig. 4-1.

In terms of reaction energy, the beam energy is not constant due to the
energy loss in the target. If we assumed the energy dependence of σI as
σI = a0+a1E, the weighted mean of σI on the stopping power can be written
as

⟨σI(E)⟩ =

∫ Eout

Ein

σI(E)

(
dx

dE

)
dE

∫ Eout

Ein

(
dx

dE

)
dE

= a0 + a1


∫ Eout

Ein

E(x)

(
dx

dE

)
dE

∫ Eout

Ein

(
dx

dE

)
dE


≡ a0 + a1Eave

= σI(Eave),

(4.15)
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where Eave is a mean energy in the target. The above condition is fulfilled in
the present measurement. Therefore, we adopted Eave as a reaction energy.
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4.8 Experimental Results

The target thickness and energy information are listed in Table 4-1. The
experimental results of σI for

40−48K, 42−51Ca, 44−46Sc on C target are also
summarized with their errors in Tables 4-1.

Table 4-1: Summary of average target thickness ⟨t(XF5)⟩ and energy infor-
mation. The Ein/A and Eout/A represent incident and outgoing energies per
nucleon, respectively. The Eave/A means an average energy per nucleon in
the reaction target.

Projectile
Target thickness Ein/A Eout/A Eave/A

[g/cm2] [MeV] [MeV] [MeV]

40K 1.848(3) 324.8 272.0 298.8
41K 1.829(3) 309.6 257.1 283.7
42K 1.807(3) 295.6 243.5 270.0
43K 1.783(3) 281.9 244.8 256.4
44K 1.852(3) 312.1 263.0 287.9
45K 1.838(3) 299.2 250.3 275.1
46K 1.752(3) 320.0 276.5 298.5
47K 1.776(3) 311.2 267.2 289.4
48K 1.788(3) 301.5 257.3 279.7

42Ca 1.822(3) 324.2 269.1 297.0
43Ca 1.807(3) 310.5 255.6 283.5
44Ca 1.785(3) 297.0 242.5 270.2
45Ca 1.841(3) 327.4 275.9 301.9
46Ca 1.839(3) 315.6 264.1 290.2
47Ca 1.810(3) 301.8 250.9 276.7
48Ca 1.721(2) 322.1 276.8 299.7
49Ca 1.742(2) 313.7 268.0 291.1
50Ca 1.761(2) 305.4 259.3 282.6
51Ca 1.748(2) 293.8 247.9 271.2

44Sc 1.791(3) 323.6 266.3 295.4
45Sc 1.780(3) 310.5 253.4 282.4
46Sc 1.761(3) 297.7 240.9 269.8
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Table 4-2: Summary of measured σI and their errors.

Projectile
σI

Statistic Systematic error Total
error Target thickness Gate width error

[mb] [%] [%] [%] [%]

40K 1389(28) 2.0 0.15 0.4 2.0
41K 1464(18) 1.2 0.15 0.4 1.3
42K 1428(19) 1.2 0.15 0.4 1.3
43K 1463(22) 1.5 0.15 0.4 1.5
44K 1471(16) 1.0 0.15 0.4 1.1
45K 1518(28) 1.8 0.15 0.4 1.9
46K 1527(20) 1.2 0.15 0.4 1.3
47K 1522(12) 0.7 0.15 0.4 0.8
48K 1543(22) 1.4 0.15 0.4 1.4

42Ca 1460(14) 0.9 0.15 0.4 1.0
43Ca 1475(12) 0.7 0.15 0.4 0.8
44Ca 1505(13) 0.8 0.15 0.4 0.9
45Ca 1477(10) 0.5 0.15 0.4 0.7
46Ca 1503(11) 0.6 0.15 0.4 0.7
47Ca 1508(18) 1.1 0.15 0.4 1.2
48Ca 1485(23) 1.5 0.15 0.4 1.5
49Ca 1580(15) 0.8 0.15 0.4 0.9
50Ca 1618(20) 1.2 0.15 0.4 1.3
51Ca 1677(42) 2.4 0.15 0.4 2.5

44Sc 1463(14) 0.9 0.15 0.4 1.0
45Sc 1488(12) 0.7 0.15 0.4 0.8
46Sc 1514(27) 1.7 0.15 0.4 1.8
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5 Discussion

5.1 Deduction of RMS Matter Radii

In order to derive the RMS matter radii ⟨r2⟩1/2m , which mean RMS ones
of nucleon density distributions ρN(r) from experimental σI, the Glauber
calculation with the MOL approximation shown in Eq. (2.70) was utilized.
As already shown in Sec. 2.5, we can calculate σR from projectile and target
densities ρP,T(r). In the present study, we obtain ⟨r2⟩1/2m to reproduce the
experimental σI with the Glauber calculation using a model function as a
projectile density distribution which will be explained in Sec. 5.1.2.

5.1.1 Nucleon Density Distribution of Target Nucleus 12C

The charge density distribution ρch(r) of
12C has been well known by the

electron elastic scattering measurement [VR87]. A harmonic-oscillator-type
(HO-type) function was employed as a charge density profile of 12C:

ρch(r) = ρ0

[
1 + α

(
r

r0

)]
exp

[
−
(
r

r0

)2
]
, (5.1)

where ρ0 is a central density. The parameters α and r0 were determined
by the electron elastic scattering [VR87]. This function has to fulfill the
following equation:

Ze = 4π

∫
ρch(r)r

2dr. (5.2)

The charge density distribution includes not only its point-proton density
distribution ρp(r) but also a charge spread of proton itself ρH(r). There-
fore, ρp(r) was extracted from ρch(r) by unfolding ρH(r) with the following
equation as

ρch(r) = e

∫
ρH(r)ρp(r)d

3r. (5.3)

Hereafter, a “proton” density distribution means a “point-proton” density
distribution ρp(r). Moreover, so as to take the quadrupole deformation effect
into account, we modified the functional shape as below:

ρ(r) =

∫
ρ0

{
1 + α

(
r

R(θ)

)}
exp

{
−
(

r

R(θ)

)2
}
dΩ,

R(θ) = R0 {1 + β2Y20(θ)} ,
(5.4)

where Y20(θ) is the spherical harmonics. Through the above procedure, ρp(r)
was obtained. Since 12C has the same number of protons and neutrons, we
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Table 5-1: Parameters for the density distribution of 12C.

Nuclide Functional type R0 a β2
12C HO 1.42 1.906 −0.623

assumed that the neutron density distribution ρn(r) is the same as ρp(r).
A “neutron” density distribution also represents a “point-neutron” density
distribution. The parameters of 12C density distribution are summarized in
Table 5-1. From the previous studies, it has been shown that the energy
dependence of σR for 12C on 9Be and 27Al as well as 12C can be reproduced
quite well by the Glauber calculation with the MOL approximation using
this density distribution [TA05].

5.1.2 Model Functions of Density Distributions of Projectile Nu-
clei

A two-parameter-Fermi-type (2pF-type) function was assumed as a density
profile of the projectile nucleus. We note that ρp(r) and ρn(r) were treated
with independent parameters. The 2pF-type function is defined as

ρp,n(r) = ρp,n(0)

1 + exp

(
−
Cp,n

ap,n

)

1 + exp

(
r − Cp,n

ap,n

), (5.5)

ap,n : surface diffuseness,
Cp,n : half-density radius,
ρp,n(0) : central density,

Here, subscripts “p” and “n” represent proton and neutron, respectively. In
analogy with Eq. (5.2), each density distribution fulfill the following relation:

(Number of particles) = 4π

∫
r2ρp,n(r)dr. (5.6)

Although a nucleon density distribution ρN(r) which is a sum of ρp(r) and
ρn(r) has 6 parameters ap,n, Cp,n, and ρp,n(0), there are only 4 independent
constraints: (1) the present experimental σI, (2) the existing charge radius
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Table 5-2: Parameters of the 3pF-type functions of 40,42,44,48Ca [FR68] and
those of the converted 2pF-type functions through the χ2-fitting procedure.

ρch(r) (3pF-type) ρp(r) (2pF-type)
Nuclide C a w C a ρ(0)

(fm) (fm) (fm) (fm) (fm) (fm−3)

40Ca 3.6758 0.5851 −0.1017 3.613 0.493 0.0845
42Ca 3.7278 0.5911 −0.1158 3.642 0.508 0.0824
44Ca 3.7481 0.5715 −0.0948 3.629 0.590 0.0802
48Ca 3.7444 0.5255 −0.03 3.711 0.532 0.0779

⟨r2⟩1/2ch obtained from the isotope shift, and Eq. (5.6) for (3) ρp(r) and
(4) ρn(r). Therefore, we have to consider additional two constraints. In
the present study, central densities of proton ρp(0) and nucleon ρN(0) were
employed as additional constraints. Note that ρ(0) means not only an exact
density at r = 0 fm but a saturation density in the bulk part of density
distribution.

Central Proton Density ρp(0)
Among Ca isotopes, ρch(r) of stable isotopes

40,42,44,48Ca were obtained from
the electron elastic scattering measurements [FR68]. The three-parameter-
Fermi-type (3pF-type) function was assumed as a charge density profile in
the analysis of Ref. [FR68]. Therefore, in order to study ρp(0) of 2pF-
type function, we converted these 3pF-type functions to the 2pF-type ones
with the χ2-fitting procedure. In this analysis, ρH(r) was unfolded from
ρch(r) in order to derive ρp(r). Table 5-2 shows obtained parameters of
converted 2pF-type functions. The obtained ρp(0) are plotted by red open
circles as a function of δ = (N − Z)/A in Fig.5-1. In comparison, ρp(0) of
Fe, Zn, and Sn isotopes are also shown in the same figure. Here, the 3pF-
type function was also adopted to Sn isotopes, so that the same procedure
as Ca isotopes was performed to Sn isotopes in order to extract ρp(0) of
2pF-type function. The linear decrease of ρp(0) along δ can be seen for all
isotope chains. The possible reason is considered that the proton radius
enlarges as increasing neutron excess to reduce the symmetry energy at the
nuclear surface, so that this tendency may be regarded as a common feature
in any isotopic chains. Furthermore, the Hartree-Fock (HF) calculations
of Sn isotopes with Gogny D1S, NL3, and SLy4 interactions [WA10] also
support this dependence. Therefore, the constraint on ρp(0) was determined
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by fitting ρp(0) of Ca isotopes as a function of δ with a linear function:

ρp(0) = 0.0843− 0.0389δ [fm−3]. (5.7)

While the δ dependence of ρp(0) of K and Sc isotopes cannot be mentioned
because there is little data on the charge distributions in the isotopic chain,
the difference of ρp(0) between Ca and Fe or Zn isotopes is small. For this
reason, K and Sc isotopes are treated here by the same condition as Eq.
(5.7).

As a result, ρp(r) can be determined by the combination of the RMS

proton radius ⟨r2⟩1/2p [AN13, KR14, GA16] and Eq. (5.7). Here, ⟨r2⟩1/2p can
be obtained from the unfolding procedure given as

⟨r2⟩p = ⟨r2⟩ch −R2
p −

N

Z
R2

n −
3ℏ2

4m2
pc

2
, (5.8)

where Rp,n are respective RMS charge radii of proton and neutron themselves
(Rp = 0.8751(61) fm [PA16], R2

n = −0.1149(24) fm [KO97]) and 3ℏ2/(4m2
pc

2)
represents the Darwin-Foldy correction term [FR97]. Parameters of each
proton density profile are summarized in Table 5-3.
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Table 5-3: Parameters of each proton density distribution ρp(r).

Nuclide
⟨r2⟩1/2p Cp ap ρp(0)
(fm) (fm) (fm) (fm−3)

40K 3.333(4) 3.595 0.4930 0.08231
41K 3.349(4) 3.606 0.4971 0.08138
42K 3.350(4) 3.626 0.4912 0.08050
43K 3.353(5) 3.644 0.4868 0.07966
44K 3.352(4) 3.663 0.4801 0.07886
45K 3.358(5) 3.678 0.4783 0.07809
46K 3.348(4) 3.701 0.4651 0.07736
47K 3.349(4) 3.718 0.4602 0.07666
48K 3.378(4) 3.718 0.4748 0.07599

42Ca 3.411(3) 3.643 0.5158 0.08240
43Ca 3.397(3) 3.671 0.5003 0.08152
44Ca 3.424(3) 3.675 0.5117 0.08067
45Ca 3.401(3) 3.708 0.4900 0.07987
46Ca 3.396(3) 3.725 0.4845 0.07910
47Ca 3.379(3) 3.753 0.4660 0.07836
48Ca 3.380(3) 3.770 0.4604 0.07765
49Ca 3.395(3) 3.778 0.4654 0.07697
50Ca 3.424(3) 3.778 0.4810 0.07632
51Ca 3.439(3) 3.785 0.4865 0.07569

44Sc 3.442(2) 3.712 0.5114 0.08249
45Sc 3.445(3) 3.730 0.5076 0.08164
46Sc 3.424(9) 3.761 0.4865 0.08083
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Figure 5-1: Relative neutron excess δ dependence of ρp(0). Open circles,
closed triangles, closed squares, and open diamonds represent Ca, Fe, Zn, and
Sn isotopes, respectively, which were calculated with parameters of respective
Fermi functions deduced by elastic electron scattering experiments [VR87].
ρp(0) of Ca and Sn isotopes (open symbols) were deduced by converting 3pF-
type functions to 2pF ones. The solid red line represents the function Eq.
5.7. The dotted, dashed, and dash-dotted lines show HF calculations for Sn
isotopes with Gogny D1S, NL3, SLy4 interactions, respectively [WA10].
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Central Nucleon Density ρN(0)
As mentioned in Sec. 1.2, the elastic scattering from 40,42,44,48Ca by using

proton, α, and pion beams were measured so far [FR68, AL76, AL77, CH77,
RA81, AL82, BO84]. In the analyses of hadron elastic scatterings, the 3pF-
type function was also employed as ρN(r). Therefore, we convert these 3pF-
type functions to 2pF-type ones in the same manner as ρch(r). Fig. 5-2 shows
the central density of nucleon density distribution ρN(0) as a function of δ.
While there are large discrepancies between the data one another for each
isotope, ρN(0) seems to be independent on δ, which are different from the
case of ρp(0). This property may be considered as a saturation property of
nuclear matter.

Figure 5-3 shows theoretical central densities of proton, neutron, and nu-
cleon density distributions ρp,n,N(0) of Sn and Pb isotopes obtained from the
conversion of the HF densities with Gogny D1S, NL3, and SLy4 interactions
to the 2pF-type functions [WA10]. Any interactions support the constant
saturation property of ρN(0) for both isotopes. Furthermore, we show re-
spective parameters of 2pF-type function for Sn and Pb isotopes obtained
from the same manner as ρp,n,N(0) with HF calculations using Gogny D1S
interaction [WA10] in Fig. 5-4. Though a and C are influenced by a shell
effect which can be seen as a dip or a kink in Fig. 5-4. For this reason,
constraints on ρp(0) and ρN(0) may be the most preferable.

Hence, we assumed that ρN(0) has a constant value for any isotopes. The
constant ρN(0) was obtained by the weighted mean of experimental ρN(0)
whose own error was mentioned in respective references (shown by closed
symbols in Fig. 5-2) as

ρN(0) = 0.176 [fm−3]. (5.9)

The standard deviation ∆ρN(0) around the weighted mean value shown by
the red shaded band in Fig. 5-2 was taken into consideration as a systematic
error when we deduce a matter radius (mentioned in detail in Fig. 5-5) :

∆ρN(0) = 0.011 [fm−3]. (5.10)
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Figure 5-2: Relative neutron excess δ dependence of ρN(0) of
40,42,44,48Ca de-

duced by proton (circle), α (diamond), and pion (triangle) elastic scatterings,
respectively [FR68, AL76, AL77, CH77, RA81, AL82, BO84]. Closed (Open)
symbols mean data with (without) error information. The solid line repre-
sents the weighted-mean value Eq. 5.9 for all closed symbols. The standard
deviation around the weighted-mean value is also shown by the red shaded
band.
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Figure 5-3: Relative neutron excess δ dependence of ρp,n,m(0) (red, blue,
black) of Sn and Pb isotopes obtained from the conversion of the HF densities
with Gogny D1S (dotted lines), NL3 (dashed lines), and SLy4 (dash-dotted
lines) interactions to the 2pF-type functions [WA10].
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Figure 5-4: Relative neutron excess δ (written by “I”) dependence of ρp,n(0)
(written by “ρ0”), Cp,n, and ap,n of Sn and Pb isotopes obtained from the
conversion of the HF densities with Gogny D1S interaction to the 2pF-type
functions. This figure is taken from Ref. [WA10].
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5.1.3 Deduced RMS Radii ⟨r2⟩1/2 and Neutron Skin Thickness rnp

In consequence, with assumptions on the projectile density distribution
mentioned in Sec. 5.1.2, we can deduce the RMS neutron and matter radii
⟨r2⟩1/2n,m defined as

⟨r2⟩1/2n =

√
4π

N

∫
r4ρn(r)dr, (5.11)

⟨r2⟩1/2m =

√
4π

A

∫
r4ρN(r)dr. (5.12)

These respective RMS radii are related to each other by the following equa-
tion:

A⟨r2⟩m = Z⟨r2⟩p +N⟨r2⟩n. (5.13)

Fig. 5-5 is the contour plot of σI in relation to ρN(0) and ⟨r2⟩1/2m for
42Ca together with the experimental σI (red solid line) and its corresponding

error (shaded band). The correlation between ⟨r2⟩1/2m and σI has a gentle

dependence on ρN(0). Therefore, a change of ⟨r2⟩1/2m within the uncertainty of
central nucleon density ∆ρN(0) shown by the blue dotted lines was estimated

as a systematic error of ⟨r2⟩1/2m . This systematic error is about 0.02 fm, which
is comparable to the most precise statistical error in the present study.

As an example, ρp(r) and the deduced ρn(r) of
49Ca are shown in Fig. 5-

6. The neutron skin structure emerges at the nuclear surface. From the
difference of RMS radii of these density distributions, we can obtain the
neutron skin thickness rnp. The deduced ⟨r2⟩1/2n,m and rnp are summarized

together with ⟨r2⟩1/2p [AN13, KR14, GA16] in Table 5-4.
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Table 5-4: Deduced ⟨r2⟩1/2n,m and rnp together with ⟨r2⟩1/2p [AN13, KR14,
GA16]. Round and square brackets show statistical error and systematic
one resulting from ∆ρN(0), respectively.

Nuclide ⟨r2⟩1/2p ⟨r2⟩1/2n ⟨r2⟩1/2m rnp
(fm) (fm) (fm) (fm)

40K 3.328(6) 3.32(9)[3] 3.32(5)[2] −0.01(9)[3]
41K 3.344(6) 3.53(6)[3] 3.43(3)[2] 0.18(6)[3]
42K 3.344(6) 3.39(6)[3] 3.37(3)[2] 0.05(6)[3]
43K 3.348(6) 3.47(6)[3] 3.42(4)[2] 0.13(6)[3]
44K 3.347(6) 3.51(4)[3] 3.44(3)[2] 0.16(4)[3]
45K 3.353(7) 3.61(7)[3] 3.51(4)[2] 0.26(7)[3]
46K 3.343(6) 3.64(5)[3] 3.52(3)[2] 0.30(5)[3]
47K 3.344(6) 3.62(3)[3] 3.509(18)[21] 0.27(3)[3]
48K 3.372(6) 3.64(5)[3] 3.54(3)[2] 0.27(5)[3]

42Ca 3.406(5) 3.46(4)[3] 3.44(2)[2] 0.06(4)[3]
43Ca 3.392(5) 3.50(4)[3] 3.45(2)[2] 0.11(4)[3]
44Ca 3.418(5) 3.55(4)[3] 3.49(2)[2] 0.13(4)[3]
45Ca 3.395(5) 3.50(3)[3] 3.451(16)[19] 0.10(3)[3]
46Ca 3.396(5) 3.55(3)[3] 3.486(17)[20] 0.16(3)[3]
47Ca 3.379(5) 3.56(5)[3] 3.49(3)[2] 0.18(5)[3]
48Ca 3.380(5) 3.51(6)[4] 3.45(3)[2] 0.13(6)[4]
49Ca 3.395(5) 3.72(4)[3] 3.59(2)[2] 0.33(4)[3]
50Ca 3.424(5) 3.78(4)[3] 3.64(3)[2] 0.36(4)[3]
51Ca 3.439(5) 3.89(9)[3] 3.72(6)[2] 0.45(9)[3]

44Sc 3.442(5) 3.42(4)[3] 3.43(2)[2] −0.02(4)[3]
45Sc 3.445(5) 3.48(4)[3] 3.465(19)[18] 0.04(4)[3]
46Sc 3.424(10) 3.56(7)[3] 3.50(4)[2] 0.13(8)[3]
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5.2 Evolution of Nuclear Radii

5.2.1 Comparison to Results of Hadron Elastic Scattering

First of all, we compare the present ⟨r2⟩1/2m of the Ca isotopic chain to
the previous values deduced from hadron elastic scattering measurements
[AL77, CH77, AL82, BO84, MC86, GI92] in Fig. 5-7. Although the absolute

values of ⟨r2⟩1/2m have large discrepancies between the data one another in

respective stable isotopes, the relative values of ⟨r2⟩1/2m from the one of 48Ca
are relatively consistent with each other, including present results as shown
in Fig. 5-8. Moreover, present results can be obtained systematically along
the long chain with better precisions. Especially, there are first experimental
results of matter and neutron radii beyond the neutron magic number N =
28. Therefore, the present results make us to discuss the evolution of matter
and neutron radii in Ca isotopes.
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Figure 5-7: Deduced ⟨r2⟩1/2m of Ca isotopes in comparison with previous
experimental results deduced by hadron elastic scattering measurements
[AL77, CH77, AL82, BO84, MC86, GI92]. In Ref. [MC86], ⟨r2⟩1/2m were
derived with both of a non-relativistic (non-rel.) and a relativistic (rel.)
analyses. The pion elastic scattering of Ref. [BO84] with different bombard-
ing energies 116, 180, and 293 MeV are also shown, respectively.
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Figure 5-8: Relative value of ⟨r2⟩1/2m to the one of 48Ca, δ⟨r2⟩1/2m [A, 48], as
a function of mass number A. The red filled band represents the error of
present ⟨r2⟩1/2m of 48Ca. Other definitions are the same as for Fig. 5-7.

119



5.2.2 Mass Number Dependence

Figures 5-9 and 5-10 show ⟨r2⟩1/2m of Ca, K, and Sc isotopes together
with the systematic A dependence of stable nuclei (black solid line) and its
standard deviation (gray shaded band). This systematics was obtained by

fitting ⟨r2⟩1/2p of stable nuclei with a A1/3 function (the detailed information
is mentioned in Appendix B). Stable nuclei located near the beta-stability

line have similar proton and neutron radii (⟨r2⟩1/2p ≃ ⟨r2⟩1/2n ≃ ⟨r2⟩1/2m ). For
most of Ca isotopes whose valence neutrons are sitting in 1f7/2 orbital, their

⟨r2⟩1/2m are roughly consistent with the systematics of stable nuclei. On the

other hand, ⟨r2⟩1/2m of Ca isotopes beyond N = 28 increase rapidly apart from
the systematics of stable nuclei. The point where the slope of A dependence
change corresponds to the magic number N = 28. Across this magic number,
the configuration of valence neutron orbital changes from the 1f7/2 to the

2p3/2. Such a shell closure effect also can be seen in ⟨r2⟩1/2m,n as well as ⟨r2⟩1/2ch

(mentioned in Sec. 1.2).
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Figure 5-9: Mass number dependence of ⟨r2⟩1/2m of 42−51Ca. The black solid
line and shaded band represent systematics of stable nuclei and their standard
deviation, respectively.
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Figure 5-10: The same figures as Fig. 5-9 of 40−48K and 44−46Sc.
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5.2.3 Contribution of Quadrupole Deformation

Nuclear radii are also influenced by a nuclear deformation. Especially, the
systematics of σI for neutron-rich Ne and Mg isotopes which include nuclei
located in the island of inversion around N = 20 can be reproduced by taking
the quadrupole deformation into account [TA12, SU13, TA14]. Thereby, we
also consider the effect of quadrupole deformation in the Ca region so as to
confirm whether the large enhancement of ⟨r2⟩1/2m beyond N = 28 can be
explained by nuclear deformation or not.

The RMS radius of a deformed nucleus ⟨r2⟩1/2def can be obtained with that

of a spherical nucleus ⟨r2⟩1/2sph [SC14] as

⟨r2⟩1/2def = ⟨r2⟩1/2sph

√
1 +

5

4π
β2
2 , (5.14)

where the β2 is a quadrupole deformation parameter. Under the assumption
of the rotation of a uniformly charged quadrupolar deformed nucleus, the
β2 can be derived with a 0+1 → 2+1 reduced transition probability B(E2) ↑
[PR16] as

B(E2) ↑= e2

(
3Zr20
4π

)
β2
2 . (5.15)

We can also obtain β2 from an electric quadrupole moment as

Q0 =

√
3

5π
(Zr20)β2, (5.16)

where Q0 is the intrinsic electric quadrupole moment. The Q0 is related with
the spectroscopic electric quadrupole moment Q which is an observable in
an measurement as

Q =
I(2I − 1)

(I + 1)(2I + 3)
Q0. (5.17)

We summarize β2 of K, Ca, and Sc isotopes derived from the experimental
B(E2) ↑ and Q in Table 5-5 [CO66, AV11, GA15, TE15, PR16]. Note that
the β2 of 42−48K cannot refer because these have not been measured yet.
In the Ca region, the absolute value of quadrupole deformation parameter
|β2| as shown in Fig. 5-11 is at most about 0.25, which is not so large com-
pared to nuclei in the island of inversion as |β2| = 0.3 ∼ 0.6. The moderate
deformation around the midpoint of 1f7/2 shell such as 42Ca and 44Ca was
described qualitatively by taking the effect of nucleon excitations across the
sd shell into account within the framework of large-scale shell model calcu-
lation [CA01]. The importance of cross-shell excitation was also pointed out
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from the point of view of the experimental charge radii [CA01] and magnetic
moments [GA15, SC03, TAY05].

In Figs. 5-12 and 5-13, the present results are compared to the values tak-
ing into account the deformation effect (open squares) based on Eq. (5.14),

where the systematics of stable nuclei was adopted as ⟨r2⟩1/2sph. From this com-
parison, the gentle enhancements on σI around the midpoint of 1f7/2 shell
(41K and 42,44Ca) are regarded as a consequence of nuclear deformation. On

the other hand, the trend of ⟨r2⟩1/2m beyond N = 28 cannot be explained at
all.
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0.3

0.2

0.1

0.0

|
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52504846444240
Mass number A

 K  Ca  Sc

Figure 5-11: Absolute values of quadrupole deformation parameter |β2| as a
function of Mass number A.
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Figure 5-12: Comparison of experimental ⟨r2⟩1/2m with RMS radii including
the contribution of quadrupole deformation shown (open squares) in Ca iso-
topes. Other definitions are the same as Fig. 5-9.
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Figure 5-13: The same figures as Fig. 5-12 of 40−48K and 44−46Sc.
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Table 5-5: Summary of experimental Q, B(E2) ↑, and β2 [CO66, AV11,
GA15, TE15, PR16].

Nuclide I Q B(E2) ↑ β2
(e · fm2) (e2 · fm4) (fm)

39K 3/2 6.03(6) 0.219(2)
40K 4 −7.51(8) −0.1055(11)
41K 3/2 7.34(7) 0.258(3)

39Ca 3/2 3.6(7) 0.12(2)
40Ca 0 92(70) 0.120(4)
41Ca 7/2 −8.0(8) −0.115(11)
42Ca 0 369(20) 0.231(6)
43Ca 7/2 −4.44(6) −0.0616(8)
44Ca 0 467(21) 0.252(6)
45Ca 7/2 2.0(7) 0.027(9)
46Ca 0 168(13) 0.147(6)
47Ca 7/2 8.4(6) 0.110(8)
48Ca 0 92(+12

−5 ) 0.105(+7
−3)

49Ca 3/2 −3.6(3) −0.107(9)
50Ca 0 37.3(+20

−18) 0.0654(+18
−16)

51Ca 3/2 3.6(12) 0.10(4)

43Sc 7/2 −27(5) −0.36(7)
44Sc 2 10(5) 0.21(11)
45Sc 7/2 −22.0(2) −0.282(3)
46Sc 2 12(2) 0.25(4)
47Sc 7/2 −22(3) −0.27(4)
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5.2.4 Enhancement Mechanism of Nuclear Radii beyond N = 28

The trend of ⟨r2⟩1/2m beyond N = 28 cannot be interpreted by taking the
deformation effect into consideration. We investigate this mechanism further
in the following.

Examination by Single Particle Model
The nuclear radius is enhanced when the valence nucleon has a small

orbital angular momentum such as s or p waves and is bound loosely. Beyond
N = 28, the configuration of valence neutron is changed from 1f7/2 to 2p3/2
orbitals, so that the wave function of valence neutron can spread spatially.
Therefore, in the case of 49Ca, we considered a single particle model (SPM)
with the combination of 48Ca core and a 2p3/2 valence neutron (ν2p3/2)

1.
The wave function of valence neutron was calculated by solving a Schrödinger

equation using a Woods-Saxon potential VWS plus centrifugal VCF as well as
plus spin-orbit VLS ones:

V (r) = VWS + VCF + VLS

=
V0

1 + exp
(
r−r0
a

) + l(l + 1)ℏ2

2µr2
− 0.44V0(⃗l · s⃗)r20

1

r2
d

dr

[
1

1 + exp
(
r−r0
a

)]
(5.18)

with

r0 ≡ 1.2A1/3 fm

a ≡ 0.6 fm,
(5.19)

where V0, µ, l, and s represent the potential depth, the reduced mass, the
orbital angular momentum, and the intrinsic spin of valence nucleon, respec-
tively. The mass number of core nucleus was adopted to obtain r0. The
potential depth V0 was tuned to reproduce the one-neutron separation en-
ergy Sn of 49Ca (Table 5-6). We assumed the bare 48Ca nucleus as a core,
which means the RMS radius of core density distribution is determined to
reproduce the σI of

48Ca. The obtained core and valence neutron densities
are also shown in Fig. 5-14.

In Figure 5-15, the calculated ⟨r2⟩1/2m of the SPM with the combination
of 48Ca and 2p3/2 valence neutron is shown by the blue open square and
line together with the present results. This simple model can not explain
the enhancement of 49Ca at all. This may be because the valence neutron
of nuclei beyond N = 28 is bound so strong compared to a halo nucleus
(separation energy is below 1 MeV) that an independent picture between a
core and a valence neutron is not so good in this case.
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The correlation between the core and the valence neutron is strong, so
that the 48Ca core may be excited. This may also result in a complicated
configuration mixing. As a very simple example, we show the SPM with
the combination of 46Ca core and three 2p3/2 valence neutrons (ν2p3/2)

3 by
the purple open triangle in Fig. 5-15. The bare 46Ca is assumed as a core
and the wave function of valence neutron is calculated in the same manner
as (ν2p3/2)

1 to reproduce the one-third of three neutron separation energy

S3n/3 ≃ 7.46 MeV. While ⟨r2⟩1/2m of 46Ca + (ν2p3/2)
3 is larger than that of

48Ca+(ν2p3/2)
1 as shown in Fig. 5-15, this calculation cannot also reproduce

the experimental ⟨r2⟩1/2m .

Table 5-6: Experimental one neutron separation energy Sn of 49,50,51Ca
[WA17].

49Ca 50Ca 51Ca

Sn (MeV) 5.14645(18) 6.3608(16) 4.8144(17)
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1

Figure 5-14: Density distribution of 49Ca with the single particle model of
core(48Ca)+(ν2p3/2)

1 valence neutron.

128



3.8

3.7

3.6

3.5

3.4

<r
2 > m

1/
2  (f

m
)

5251504948
Mass number A

 Present results
 
Single particle model

 Core(48Ca) + (ν2p3/2)
1

 Core(46Ca) + (ν2p3/2)
3

Figure 5-15: Experimental ⟨r2⟩1/2m of Ca isotopes in comparison with ⟨r2⟩1/2m

calculated by the single particle model.

Finally, we estimate the effect of core enlargement for 49,50,51Ca within
the SPM. The RMS radius of the system which consists of core and valence
neutrons ⟨r2⟩1/2c+v is related to respective RMS radii by the following equation:

⟨r2⟩1/2c+v =

√
Ac⟨r2⟩c + Av⟨r2⟩v

Ac + Av

. (5.20)

⟨r2⟩1/2c : RMS radius of core nucleus

⟨r2⟩1/2v : RMS radius of valence neutrons
Ac : The number of nucleons in the core nucleus
Av : The number of valence neutrons

It was assumed that the mass number of core is Ac = 48. Here, we note
that the assumed core is not necessarily the same as the bare 48Ca. The
single particle density distributions were calculated in the same manner as
the above discussion to reproduce Sn, S2n/2, and S3n/3 in the case of 49Ca,
50Ca, and 51Ca, respectively. Actually, when the core is excited, the valence
neutrons are more bound in order to reproduce the separation energy. As an
example, in the case of 48Ca+(ν2p3/2)

1, the binding energy dependence of the

core enlargement relative to ⟨r2⟩1/2m of the bare 48Ca, ⟨r2⟩1/2c −⟨r2⟩1/2m (48Ca), is
shown in Fig. 5-16. If the binding energy is larger than the experimental Sn,
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the value of estimated core enlargement is not influenced beyond the error.
We summarize the deduced ⟨r2⟩1/2c and ⟨r2⟩1/2c − ⟨r2⟩1/2m (48Ca) in Table 5-7.
In order to explain the large enhancement of matter radius beyond N = 28,
the core has to be enlarged at least about 0.1-0.2 fm.

Table 5-7: Summary of deduced ⟨r2⟩1/2c together with ⟨r2⟩1/2v and the

experimental ⟨r2⟩1/2m . The core enlargement relative to ⟨r2⟩1/2m of 48Ca,

⟨r2⟩1/2c − ⟨r2⟩1/2m (48Ca), is also summarized.

Nuclide
⟨r2⟩1/2m ⟨r2⟩1/2v ⟨r2⟩1/2c ⟨r2⟩1/2c − ⟨r2⟩1/2m (48Ca)
(fm) (fm) (fm) (fm)

49Ca 3.59(2) 4.34 3.57(2) 0.12(4)
50Ca 3.64(3) 4.27 3.61(3) 0.16(5)
51Ca 3.72(6) 4.30 3.68(6) 0.22(7)
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Figure 5-16: Binding energy dependence of ⟨r2⟩1/2c −⟨r2⟩1/2m (48Ca) in the case
of 48Ca + (ν2p3/2)

1. The core enlargement with the experimental Sn is also
shown by the closed circle.
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Comparison to Theoretical Calculations
Next, in order to discuss the mechanism of the evolution of nuclear radii

beyond N = 28 in more detail, we compared experimental nuclear radii to
theoretical ones. The ⟨r2⟩1/2p,m of Ca isotopes were calculated with the Hartree
Fock (HF) + BCS [HOR17] and the Relativistic Mean Field (RMF) [PI17]
theories. In the case of HF+BCS calculations, KDEv1 [AG05], LNS [GA06],
SkI3 [RE95], SkM* [BA82], SkT1, SkT2, SkT3 [TO84], SLy4,[CH97] and SV-
sym32 [KL09] Skyrme interactions were adopted. On the other hand, NL3
[LA97, LA99], FSUGold [TO05], and FSUGarnet [CH15] relativistic inter-
actions were employed in the RMF calculations. Figure 5-17 represents the
present experimental ⟨r2⟩1/2m and ⟨r2⟩1/2p obtained from isotope shifts [GA16]
as a function of neutron number N together with respective theoretical cal-
culations. Though almost all calculations exhibit a kink structure at the
neutron magic number N = 28 not only in the case of ⟨r2⟩1/2m but also in

that of ⟨r2⟩1/2p , any calculations cannot be reproduced experimental ⟨r2⟩1/2m

and ⟨r2⟩1/2p simultaneously in the wide range of N .
On the other hand, as mentioned in Sec. 1.2, the ab initio coupled-cluster

calculations of ⟨r2⟩1/2p with the NNLOsat chiral effective field theory (χEFT)
interaction which includes the contribution of three-body force microscopi-
cally were also performed for neutron-rich Ca isotopes [GA16]. As shown
in Fig. 5-18, the ab initio calculations (black bold line) reproduce relatively
better than the mean field (HF+BCS and RMF) ones. However, the unex-

pectedly large enhancements of ⟨r2⟩1/2p beyond N = 28 cannot be explained
quantitatively even by using such a sophisticated theory [GA16].

In order to estimate these enhancements beyond N = 28 in more detail,
we introduced a slope parameter of RMS radii against neutron number N ,
SLm,p, defined by the following equation:

SLm,p =
d⟨r2⟩1/2m,p

dN
. (5.21)

The SLm,p were obtained by fitting available data in N ≥ 28 to a linear
function. We show the correlation between SL and the RMS radii of 48Ca,
⟨r2⟩1/2[48Ca], for proton and matter radii, respectively, in Fig. 5-19. Here,
⟨r2⟩1/2[48Ca] was utilized as a barometer to estimate whether the theoretical
calculations reproduce the absolute values of experimental ones or not. In
this figure, the experimental SLm,p and ⟨r2⟩1/2m,p[48Ca] are represented by the
horizontal and vertical red solid lines, respectively, with their corresponding
errors shown by dotted lines. From the comparison between SLm and SLp,

the evolution of ⟨r2⟩1/2m by increasing N is more drastic than that of ⟨r2⟩1/2p ,
which is also followed by the theoretical SLm,p. Moreover, surprisingly, the
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Figure 5-17: Present experimental ⟨r2⟩1/2m (closed circles) and previously mea-

sured ⟨r2⟩1/2p (crosses) by isotope shifts [GA16] of Ca isotopes as a function
of neutron number N together with the theoretical values not only with
HF+BCS [HOR17] using (a) KDEv1, (b) LNS, (c) SkI3, (d) SkM*, (e) SkT1,
(f) SkT2, (g) SkT3, (h) SLy4, and (i) SV-sym32 Skyrme interactions but also
with RMF [PI17] using (j) NL3, (k) FSUGold, and (l) GSUGarnet relativistic
interactions, respectively.
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Figure 5-18: Experimental ⟨r2⟩1/2p (crosses) [GA16] of Ca isotopes as a func-
tion of neutron number N together with the theoretical calculations with
HF+BCS [HOR17], RMF [PI17], and ab initio using NNLOsat (black bold
line) [GA16].

experimental SL is about twice larger than any calculated ones in both cases
(SLm and SLp), which infers that the reason why almost all theoretical RMS
radii underestimate the experimental ones beyond N = 28 in both cases may
have a common problem. In terms of the theoretical study of ⟨r2⟩1/2ch for Pb
isotopes across N = 126 with the Skyrme-HF and RMF calculations [BE03],
it was pointed out that the spin-orbit force is one of the candidates for the
origin of the kink property. Anyway, more theoretical studies are required for
the quantitative and comprehensive description of both matter and proton
radii across the neutron magic number N = 28. Here, we emphasize that
the common property of the ratio of experimental SLm,p to theoretical ones
is found for the first time.

We also consider this enhancement property within the framework of 2pF-
type function. As already mentioned in Sec. 5.1.2, The 2pF-type function
is characterized by only 3 parameters, a half-density radius C, surface dif-
fuseness a, and central density ρ(0). In order to access the information of
these parameters in regard to theoretical results, we converted the theoretical
density distributions calculated with the HF+BCS theory (private commu-
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nication by W. Horiuchi and S. Ebata) to the 2pF-type functions by the χ2

fitting procedure. To obtain the information of C and a, the fitting procedure
has to be done with a good accuracy especially at the nuclear surface rather
than the central part of density distribution. Therefore, the fitting was done
to reproduce the r2ρ(r) distribution. Figure 5-20 shows obtained (a) C and
(b) a of proton (solid lines) and neutron (dashed lines) density distributions
as a function of N , respectively. Kink structures are clearly seen at N = 28
in Fig. 5-20(b). Therefore, it seems that the drastic enhancement of nuclear
radii beyond N = 28 results from a large contribution of the sudden increase
of surface diffuseness. This may be related to the fact that the configuration
of valence neutrons is changed from 1f7/2 orbital to 2p3/2 one which can fur-
ther spread spatially. In order to achieve the more quantitative description
of the evolution of nuclear radii beyond N = 28, the reproduction of surface
structure is extremely important. Also, from this point of view, the pre-
cise description of spin-orbit force seems to be significant because this force
contributes to the shape of potential surface.
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Figure 5-19: Two-dimensional plots of SLp,m as a function of ⟨r2⟩1/2p,m. The
experimental values and corresponding errors are represented by the red solid
and dotted lines, respectively. Each color definition means the same as in
Figs. 5-17 and 5-18.
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calculated with HF+BCS theory as a function of N
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Contribution of Spin-Orbit Force
We mention such a drastic change of the trend of nuclear radii in other

regions. The σI for N, O, F, Ne, Na, and Mg isotopes located in the vicinity of
N = 14 [SU95, SU98, OZ01, KA11, TA12, SU13, TA14, HO17, OH18] show
a similar behavior (Fig. 5-21). A kink structure can be seen even in the
well-bound nucleus (Sn = 4.25(14) MeV at 25Ne) as well as in the loosely-
bound one (Sn = 1.54(25) MeV at 22N). Especially, the enhancements of
σI at

22N, 23O, and 24F which cannot be explained with the single particle
model are put in the spotlight as an anomaly in neutron-rich nuclei [KA01,
TA01]. The elucidation of kink mechanism emerged at the magic number may
result in a comprehensive understanding of the N = 14 anomaly. In terms
of the experiment, σI measurements for nuclides across the magic number
can provide important information to study the nuclear magicity. On the
other hand, the charge radii have been already measured systematically for
many isotopic chains. I. Angeli et al. pointed out that a neutron number
dependence of charge radii exhibits a similar kink not only in the traditional
magic numbers N = 2, 28, 50, 82, and 126 but also in N = 6 and 14 as shown
in Fig. 5-22 [AN13]. These kink structures can be also seen in the isotonic
chains. In particular, very recently, the magicity of Z = 6 for several isotonic
chains was discussed [TR18]. However, the kink structure cannot be found
at magic numbers of 8 and 20 in either isotopic or isotonic chains.

Based on the shell model proposed by Mayer and Jensen, the magic num-
bers can be classified into two cases as shown in Fig. 5-23. Ones of 2, 8,
and 20 emerge even with the harmonic-oscillator as well as the Woods-Saxon
potentials. In contrast, the others of 28, 50, 82, and 126 can occur owing
to the introduction of spin-orbit potential. Furthermore, the numbers of 6
and 14 also correspond to the sub-shell closures of j> = l + 1/2 orbitals.
Therefore, it seems that the kink structure of the trend of nuclear radii can
be seen only at shell closures which emerge due to the spin-orbit splitting.
From this point of view, the kink structure may be deeply related to the
spin-orbit force. In the following, we show the speculation of the relation
between the kink structure and the spin-orbit force.

Within the framework of mean field theory with the Skyrme interaction,
the spin-orbit potential V n

SO(r) for neutrons is represented as [SA14]

V n
SO(r) ≡ Un

SO(r)(l · s)

=

[
1

r

(
b4
dρN(r)

dr
+ b′4

dρn(r)

dr

)
+

(
α
Jn(r)

r
+ β

Jp(r)

r

)]
(l · s),

(5.22)
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Figure 5-21: Neutron number dependence of σI of N, O, F, Ne, Na, and Mg
isotopes on C target at around 240AMeV (closed symbols) or 1A GeV (open
symbols) [SU95, SU98, OZ01, KA11, TA12, SU13, TA14, HO17, OH18]. Sn

of nuclei whose N = 15 are also shown in MeV.
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Figure 5-23: Schematic view of the emergence of magic numbers based on
the shell model with the Woods-Saxon potential (left) and the Woods-Saxon
plus spin-orbit ones (right). The kink structure of the trend of nuclear radii
can be observed only at magic numbers occurred by the spin-orbit splitting
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α =
1

8
(t1 − t2)−

1

8
(t1x1 − t2x2),

β = −1

8
(t1x1 − t2x2),

(5.23)

where (t1, t2, x1, x2, b4, b
′
4) is a set of Skyrme parameters of effective 2-body

interaction. The Jp(r) and Jn(r) are proton and neutron spin-orbit densities
defined as

Jq(r) =
1

4πr3

∑
i

v2i (2ji + 1)

[
ji(ji + 1)− li(li + 1)− 3

4

]
R2

i (r), (5.24)

where vi is the occupation probability, ji the total spin, li the orbital angu-
lar momentum, and Ri the radial part of the single particle wave function,
respectively. The subscript “q” means proton “p” or neutron “n”.

The change of density profile can affect the strength of spin-orbit potential
Un
SO(r) due to the ρ(r) dependence of the first term of Eq. (5.22). Figure 5-

24 shows the ratio of the first term of Un
SO(r) to the central potential by

the HF+BCS calculation with SLy4 interaction. Here, the Woods-Saxon
potential VWS(r) was adopted as the central potential. The contribution of
spin-orbit potential becomes relatively large in the potential surface beyond
N = 28 due to the sudden increase of surface diffuseness. Although the origin
of increase of surface diffuseness itself cannot be mentioned, the spin-orbit
force can be related to the kink structure of the trend of nuclear radii.

The Skyrme parameters b4 and b
′
4 which represent the strength of 2 body

spin-orbit interaction may also contribute to the strength of kink structure.
For general Skyrme forces, the value of b′4 is assumed to be the same as that of
b4. On the other hand, within the framework of RMF theory, the spin-orbit
interaction depends only on the derivative of nucleon density distribution
dρN(r)/dr, which corresponds to b′4 = 0 MeV · fm5. It was pointed out that
this difference between the HF with general Skyrme forces and RMF theories
plays a crucial role in order to explain the kink at N = 128 magic number
of charge radii of Pb isotopes [RE95, SH95, SA01, GO13]. The SkI3 Skyrme
interaction was constructed with b′4 = 0 MeV · fm5 in order to reproduce
the difference of charge radii between 208Pb and 214Pb as well as the ground
state properties of some magic nuclei. In the case of Ca isotopes, as shown in
Fig. 5-19, HF+BCS calculation with SkI3 interaction and RMF calculations
have relatively large values of SLm in comparison to HF+BCS ones with
other Skyrme interactions of b4 = b′4.

The second term of Un
SO(r) represents the contribution of the spin-orbit

densities Jq(r). Since the value of ji(ji+1)− li(li+1)−3/4 in Eq. (5.24) has
opposite sign between the pair of spin-orbit splitting orbitals, j> = l + 1/2
and j< = l − 1/2, the effect of Jq(r) for the pair of fully-occupied spin-orbit
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orbitals is negligibly small. Therefore, Jq(r) represents the effect of non-fully
occupied spin-orbit splitting orbitals. For example, in the case of 42−51Ca,
neutron 1f orbitals only contribute to Un

SO(r) via Jn(r). According to [ST77],
α < 0 in Eq. (5.22) may be preferable [SA14]. In this condition, the effect
of Jn(r) expands the shell gap between orbitals of j> and j< as adding more
neutron in the orbital of j>. On the other hand, the neutron shell gap at
N = 28 becomes narrower with filling neutrons in the f5/2 (j<) orbital, so
that 48Ca may not be a good core for Ca isotopes beyond N = 28 due to
the smaller shell gap. From this point of view, the occupation of orbitals of
spin-orbit partners is important to discuss the strength of spin-orbit splitting.
Furthermore, the tensor force may be also related to the spin-orbit splitting
because of the same functional shape of the term from the tensor force as
the second term of Un

SO(r) [ST77, SA14]. In addition, several possibilities
on contributions from the spin-orbit potential were discussed in relation to
the points such as the development of neutron-skin [FU93, OT07] and the
3-body spin-orbit interaction [NA15a, NA15b].

However, the above descriptions are just speculations, that is, the mech-
anism of kink structure at the magic number in the trend of nuclear radii
has not been understood yet in the microscopic level. Therefore, the further
theoretical studies are desired to explain the emergence of kink structure
in more detail. The present results which are the first systematic ones of
experimental matter radii across the neutron magic number are so valuable
for the detailed theoretical studies together with previously measured charge
radii. Therefore, further experimental investigations on systematic matter
radii like the present one can also contribute to solving the problem.
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5.3 Derivation of L

Figure 5-25 shows the present experimental rnp of K, Ca, and Sc isotopes as
a function of δ. Thus, we successfully obtained rnp from the direct extraction
with rm and rp in a wide range of δ, as 0.05 < δ < 0.22. These data show
the gradual development of neutron skin structure with increasing neutron
excess. The present result of 48Ca is consistent with the recent experimental
one by the dipole polarizability αD (rnp = 0.14-0.20 fm) [BI17] shown by the
red bar in Fig. 5-25. We try to derive the EOS parameter L from the present
rnp. In order to derive L from rnp, there are mainly two different methods as

• Analysis based on the droplet model [CE09, WA09]

• Analysis based on the effective interaction [CH10, RO15]

M. Centelles and M. Warda et al. analyzed 26 rnp data (from 40Ca to
238U) obtained from antiprotonic atoms [JA04] based on the droplet model
with Eqs. (1.7)-(1.9) [CE09, WA09]. However, very recently, W. Horiuchi et
al. showed a crucial underestimation of rnp calculated by the droplet model
as increasing neutron excess as shown in Fig. 5-26 [HOR17]. This discrepancy
results from reducing a higher-order term in deriving Eq. (1.7) [MY74].
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Figure 5-25: Neutron-skin thickness rnp of K (green squares), Ca (red circles),
and Sc (orange triangles) isotopes as a function of δ.
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Figure 5-26: Calculated neutron-skin thickness (written by “∆rnp”) of even-
even Ca, Ni, Zr, Sn, Yb, and Pb isotopes as a function of δ. Open circles show
the HF calculations including the BCS effect (HF+BCS) using SkM*, SLy4,
and SkI3 interactions. The red solid, green dashed, and blue dotted lines
represent neutron-skin thicknesses and their bulk and surface terms (defined
in Ref. [HOR17]) calculated by the droplet model with 2pF-type functions to
which were obtained by converting the exact HF+BCS density distributions,
respectively. This figure is taken from Ref. [HOR17].

On the other hand, in the derivation method by utilizing the effective
interactions, nuclear density distributions and a corresponding rnp can be
obtained with the mean field theory using Skyrme, Gogny, and relativistic
forces. An energy density can also be calculated (Eq. (1) in Ref. [DU12], for
example), so that each effective interaction corresponds to respective EOS
parameters including L. Owing to the theoretical study with several effective
interactions, the linear correlation between L and rnp was suggested [BE03].
As mentioned in Sec. 1.3, for example, L.-W. Chen et al. deduced L as
58± 18 MeV from rnp of Sn isotopes with Skyrme Hartree Fock calculations
using MSL0 interactions which have different L values [CH10]. It seems that
this is the main method to deduce L from rnp as well as a dipole polarizability
αD [CH10, TA11, RO15].

In the present study, we also employed the latter method. However, the
theoretical calculations cannot explain the enhancement of nuclear radii for
Ca isotopes beyond N > 28 as mentioned in Sec. 5.2.4. Therefore, in the
following discussion, we just examine the sensitivity of the present rnp to L.
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5.3.1 Correlation between rnp and L

For even-even Ca isotopes, in order to derive the correlation between rnp and
L, we utilized the HF+BCS calculations by W. Horiuchi and S. Ebata (pri-
vate communications) [HOR17] as well as the relativistic mean field (RMF)
calculations by J. Piekarewicz [PI17]. Moreover, rnp of the doubly-magic
nucleus 48Ca is calculated with the density functional theories (DFTs) with
non-relativistic and relativistic interactions [ZH16], so that these calculations
were also employed. In Table 5-8, we summarize rnp and L of respective in-
teractions which were used to construct the correlation between rnp and L.
Figure 5-27 represents calculated rnp of

48Ca as a function of L as an example.
These mean field results show that rnp depends on L linearly with the corre-
lation coefficient r = 0.955. Therefore, we obtained the correlation function
by fitting over all mean field calculations (HF+BCS, RMF, and DFT) as
shown by the red bold line in Fig. 5.25. The slope A(δ) and intercept B(δ)
were derived from the linear fit to the correlation between rnp and L for each
Ca isotope, so that the calculated neutron-skin thickness rfuncnp was obtained
from the following equation:

rfuncnp (δ, L) ≡ A(δ)L+B(δ). (5.25)

Although only the HF+BCS and RMF calculations were performed for
the other even-even Ca isotopes, the result of linear fit to the HF+BCS and
RMF calculations of 48Ca shown by the blue thin line in Fig. 5.25 is consistent
well within a 1σ confidence level of the fitting result over all mean field
calculations. Therefore, it was considered that smaller references in even-
even Ca isotopes excluding 48Ca do not have a special influence in deducing
L from rnp. The L dependences of rfuncnp (δ, L) for 42,44,46,48,50,52Ca are shown
in Fig. 5-28 together with that of 208Pb which were obtained from the same
manner with the DFTs [WA09, CE10, RO11]. A heavier (more neutron-rich)
Ca isotope have a larger slope, which corresponds to a high sensitivity of rnp
to deduce L. From this point of view, 50Ca and 52Ca have a similar sensitivity
as 208Pb. By using rfuncnp (δ, L), we attempted to deduce L from the present
data. Though the exact calculations can not be referred in the even-odd Ca
isotopes, the HF+BCS calculations were obtained by taking the average of
neighboring nuclei [HOR17]. The parameters A(δ) and B(δ) for respective
Ca isotopes used in the present study are summarized in Table 5-9.

Very recently, the ab initio calculations of rnp of 48Ca with the chiral
effective field theory (χEFT) interactions which include the contribution of
3N force microscopically were also performed [HA16] (shown by green sym-
bols in Fig. 5.25). The ab initio results are relatively small in comparison
to the mean field ones beyond the standard deviation of them (red shaded
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band). Especially, the ab initio calculation with the NNLOsat χEFT inter-
action which perfectly reproduces the charge radius [GA16] of 48Ca shows
a quite small value. However, the ab initio calculations of rnp for other Ca
nuclides besides 48Ca have not been performed yet. Although the origin of
this discrepancy between the mean field and the ab initio calculations is not
well known, we assumed the correlation function constructed from the mean
field calculations in the analysis here.

48Ca
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Figure 5-27: Calculated rnp of 48Ca with the HF+BCS [HOR17] (squares),
RMF [PI17] (triangles), and DFT [ZH16] (diamonds) as a function of L.
The red bold line shows a linear function obtained by fitting over mean field
calculations (black symbols). The red dotted line is a 1σ confidence level of
the red line. The standard deviation of mean field calculations around the
red line is represented by the red shaded band. The blue thin line exhibits
the fitting result to the HF+BCS and the RMF data. As a comparison, the
ab initio calculations with NNLOsat and other several χEFT interactions are
also plotted by the green closed and open circles, respectively.
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Table 5-8: The mean field calculations (HF+BCS [HOR17], RMF [PI17],
and DFT [ZH16]) of rnp with several interactions and the corresponding L.

Method Interaction L [MeV]
rnp[fm]

42Ca 44Ca 46Ca 48Ca 50Ca 52Ca

HF+BCS

KDE0v1 41.4 0.026 0.083 0.129 0.164 0.246 0.317
SkM* 45.8 0.019 0.075 0.121 0.155 0.223 0.289
SLy4 45.9 0.022 0.077 0.121 0.153 0.234 0.294
SkT3 55.3 0.022 0.078 0.128 0.167 0.234 0.307
SkT2 56.2 0.021 0.080 0.131 0.169 0.241 0.309
SkT1 56.2 0.023 0.082 0.134 0.170 0.242 0.313

SV-sym32 57.1 0.032 0.095 0.150 0.186 0.266 0.332
LNS 61.5 0.023 0.081 0.129 0.164 0.253 0.320
SkI3 100.5 0.041 0.110 0.166 0.211 0.315 0.384

RMF
FSUGarnet 51.0 0.022 0.081 0.128 0.167 0.267 0.343
FSUGold 60.5 0.030 0.097 0.152 0.197 0.305 0.391

NL3 118.2 0.038 0.111 0.172 0.226 0.334 0.423

DFT

MSk3 7.0 0.128
MSk6 9.6 0.129
SIII 9.9 0.125
SKP 19.7 0.145
SLy6 47.5 0.151
SLy5 48.3 0.160
SII 50.0 0.178

DD-ME2 51.3 0.186
DD-ME1 55.4 0.193
DD-PC1 69.8 0.195
SKMP 70.3 0.168
SV 96.2 0.196

PC-PK1 113.1 0.222
NL-SH 113.7 0.215
PK1 116.0 0.224
PCF1 117.1 0.226
NL3 118.5 0.226
NL3* 122.6 0.231
SkI5 129.5 0.214
NL1 140.1 0.249
NL2 133.5 0.245
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Table 5-9: Parameters of rfuncnp (δ, L).

Nuclide δ
Slope A(δ) Intercept B(δ)
[fm/MeV] [fm]

42Ca 0.048 0.00026(5) 0.010(4)
43Ca 0.070 0.00044(11) 0.031(7)
44Ca 0.091 0.00048(8) 0.057(5)
45Ca 0.111 0.00064(14) 0.074(9)
46Ca 0.130 0.00067(11) 0.097(7)
47Ca 0.149 0.00082(17) 0.106(10)
48Ca 0.167 0.00085(5) 0.124(4)
49Ca 0.184 0.00119(20) 0.144(12)
50Ca 0.200 0.00133(25) 0.180(17)
51Ca 0.216 0.00144(24) 0.203(14)
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Figure 5-28: Dependence of rfuncnp (δ, L) on L for 42,44,46,48,50,52Ca together with
the one for 208Pb.
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Figure 5-29: Present rnp of Ca isotopes together with their systematic errors
(shaded band) results from Eq. (5.10) as a function of δ. As a comparison,
rfuncnp (δ, L) with L = 0 (green dash-dotted), 50(blue dotted),100 (black solid),
and 150 (red dashed) MeV are also shown.

5.3.2 Sensitivity of rnp to L

Figure 5-29 shows rnp as a function of δ together with rfuncnp (δ, L) with
L = 0, 50, 100, and 150 MeV, respectively. Present results are distributed
within 0 < L < 150 MeV. In order to deduce L quantitatively, we utilized
the χ2 fitting procedure with the correlation function rfuncnp (δ, L). As shown
in Sec. 5.2.4, the mean field calculations cannot quantitatively reproduce
the mass dependence of the present ⟨r2⟩1/2m as well as that of ⟨r2⟩1/2ch . [GA16].
Hence, by taking this fact into account, the fitting procedures were performed
to the following data set:

(i) 42−48Ca

(ii) 42−51Ca
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Table 5-10: Summary of deduced L through the χ2 fitting procedures.

Data set
L [MeV]

(a) (b) (c)
ρN(0) = 0.176 fm−3 ρN(0) = 0.165 fm−3 ρN(0) = 0.187 fm−3

(i) 42−48Ca 80(37) 134(24) 27(45)
(ii) 42−51Ca 118(16) 156(21) 79(16)

Also, the present result of rnp has a systematic error (δrnp)dens resulting from
the uncertainty of central matter density ∆ρN(0) = 0.011 fm−3 (Eq. (5.10))
relative to ρN(0) = 0.176 fm−3 (Eq. (5.9)) as shown in Fig. 5-29 by the shaded
band. Therefore, in order to treat this systematic error appropriately, we also
performed the fitting procedure with the following cases:

(a) rnp [ρN(0) = 0.176 fm−3],

(b) rnp + (δrnp)dens [ρN(0) = 0.165 fm−3],

(c) rnp − (δrnp)dens [ρN(0) = 0.187 fm−3].

Figure 5-30 shows χ2 distributions as a function of L The deduced re-
sults are also summarized in Table 5-10. In the case (i-a; 42−48Ca with
ρm(0) = 0.176 fm−3), L is deduced as L = 80(37)stat MeV (the subscript
means statistical error), which is consistent with the average of previous re-
sults L = 58.9±16.5 MeV [LI13]. Though the fitting result to data including
nuclei beyond N > 28 (ii-a) is relatively large (this may be because the the-
oretical nuclear radii of 49−51Ca are underestimated.), this data set has a
possibility to determine L with a good statistical error as δLstat = 16 MeV.
On the other hand, the deduction of L also depends on ρN(0) as shown in
Fig. 5-30. When we assumed the uncertainty ∆ρN(0) = 0.011 fm, the sys-
tematic error of L is estimated as about (δL)syst = 40-50 MeV. Therefore,
the precision for the determination of L is governed by this systematic error.
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Figure 5-31: Dependence of rnp with ρN(0) = 0.156 (open triangles), 0.176
(red closed circles), and (open squares) against δ. Other definitions are the
same as Fig. 5-29.

In order to recognize the effect of ρN(0) on rnp explicitly, as an example,
we show the δ dependence of rnp with ρN(0) = 0.156 (open triangles), 0.176
(red closed circles), and 0.196 (open squares) fm−3 in Fig. 5-31. Although the
absolute values of rnp are changed in accordance with ρN(0), the relative ones
(which means the shift of rnp from 42Ca to ACa) are independent on ρN(0).
Since the slope of calculated lines shown in Fig. 5-31 strongly depends on L,
the relative rnp may also have a sensitivity to L. Therefore, we attempted to
deduce L from the χ2 fit with L and ρN(0) as free parameters. The fitting
procedure was performed only to the data set (ii) 42−51Ca. We show the
contour plot of χ2/Nfree in relation to L and ρN(0) for this fitting procedure
in Fig. 5-32. Here, Nfree means a degree of freedom (Nfree = 8 in the present
case). From this fit, we can extract the information of L as summarized in
Table 5-11. This shows that the simultaneous determination of L and ρN(0)
can be also accomplished from the systematic data set of σI along the isotopic
chain, if the structure is well solved.
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Table 5-11: Deduced L and corresponding ρN(0) from the contour plot shown
in Fig. 5-32.

L ρN(0)
(MeV) (fm−3)

140+44
−30 0.169+0.008

−0.010
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)
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Figure 5-32: Contour plot of χ2/Nfree in relation to L and ρN(0) for the fitting
to the data set (ii) 42−51Ca. The red circle shows the deduced value and the
red contour represents the error region which corresponds to the value of
minimum χ2/Nfree + 1/Nfree. As a comparison, ρN = 0.176 fm−3 (Eq. (5.9))
is also shown by the blue line.
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Figure 5-33: Comparison of present results with ρN(0) = 0.176 fm−3 (closed
circles) to rfuncnp (δ, L = 80 MeV) (dotted line) and rmodf

np (δ, L = 80 MeV) (bold
solid line).

Finally, we examine the sensitivity of the whole of the present rnp to L in
more detail by the following way. As shown in Fig. 5-29, in spite of the fact
that rnp of 42−48Ca with ρN(0) = 0.176 fm−3 results in L = 80(37) MeV, the
ones of 49−51Ca prefer much larger L as approximately L = 150 MeV. This
can be attributed to the fact that the theoretical calculations underestimate
the nuclear radii for Ca isotopes beyondN = 28 significantly. For this reason,
in order to avoid this effect on the examination of sensitivity, we modified
rfuncnp (δ, L) only for 49−51Ca by introducing a scale factor α to reproduce the
systematics of experimental rnp with L = 80 MeV as follows:

rmodf
np (δ, L) ≡ α× rfuncnp (δ, L), (5.26)

where rmodf
np (δ, L) is the modified function. Here, the scale factor was deter-

mined as about α ∼ 1.3. The modified function rmodf
np (δ, L = 80 MeV) is

shown in Fig. 5-33 by the bold line together with rfuncnp (δ, L = 80 MeV) (dot-
ted line). The fitting result with rmodf

np (δ, L) is summarized in Table 5-12 and
also shown in Fig. 5-34 as a contour plot of χ2/Nfree in relation to L and ρN(0).
This examination shows the present data set have a sensitivity as 30 MeV
precision to determine L, which is comparable to the previous experimental
studies (L = 58.9 ± 16.5 MeV [LI13]). Therefore, From the point of view
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not only of the determination of L but also of the evolution of nuclear radii
across the neutron magic number N = 28, the future progress in theoretical
studies in Ca isotopes to explain proton and neutron radii simultaneously is
strongly desired.

Table 5-12: Deduced L and corresponding ρN(0) from the contour plot shown
in Fig. 5-34.

L ρN(0)
(MeV) (fm−3)

66(30) 0.183(9)
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Figure 5-34: Contour plot of χ2/Nfree in relation to L and ρN(0) for the fitting
to the data set (ii) 42−51Ca. This fitting was performed with the modified
correlation functions. Since the minimum χ2/Nfree is less than 1, we employed
the error region upto the value of 1 + 1/Nfree = 1.2. Other definitions mean
the same as Fig. 5-32.
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6 Summary

6.1 Summary

In this study, we measured the interaction cross sections σI for
42−51Ca

and their neighboring nuclides 40−48K and 44−46Sc on a natural C target at
around 270 MeV/nucleon with the transmission method. The experiment
was performed at the RIBF facility at RIKEN by using the BigRIPS frag-
ment separator. The present σI data are the first systematic ones along the
isotopic chain in Ca mass region. The root-mean-square (RMS) matter radii

⟨r2⟩1/2m were successfully deduced based on the Glauber-type calculation with

the modified optical limit approximation. The present results of ⟨r2⟩1/2m are
more precise than the previously measured ones which are for only stable Ca
isotopes 40,42,44,48Ca. We also determined the neutron radii and therefore the
neutron-skin thicknesses rnp from the deduced ⟨r2⟩1/2m in combination with

the RMS proton radii ⟨r2⟩1/2p , which were derived from the previously mea-
sured charge radii by isotope shifts. These results represent the first precise
and systematic data for the neutron distributions of Ca isotopes across the
N = 28 magic number. From the obtained ⟨r2⟩1/2m and rnp, the following
results and conclusions have been presented.

• For nuclides below N = 28, the trend of ⟨r2⟩1/2m follows the systematics

of spherical stable nuclei. Moreover, the mild enhancement of ⟨r2⟩1/2m

around the midpoint of 1f7/2 shell can be explained by taking the effect
of quadrupole deformation into account.

• The ⟨r2⟩1/2m of Ca isotopes beyond N = 28 are significantly enhanced
compared to the systematics of spherical stable nuclei, This is consis-
tent with the trend of previously measured charge radii. These en-
hancements of ⟨r2⟩1/2m cannot be explained by the effect of quadrupole
deformation.

• In the case of 49Ca, we also examined the enhancement of ⟨r2⟩1/2m within
the framework of the single particle model (SPM) with the combination
of 48Ca core + 2p3/2 valence neutron. However, this model also cannot
reproduce the experimental result, which may indicate the need to con-
sider the core excitation in 49Ca. This may also indicate a complicated
configuration mixing. To explain the experimental ⟨r2⟩1/2m of 49,50,51Ca
within the SPM, the core has to be enlarged by at least about 0.1-0.2
fm.
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• The present experimental ⟨r2⟩1/2m and the previously measured ⟨r2⟩1/2p

were compared to several theoretical calculations using the Hartree
Fock (HF) and relativistic mean field (RMF) theories. Although the
theoretical calculations also show the slope change of the trend of nu-
clear radii beyond N = 28, the slope of experimental results about
two times as large as those of theoretical calculations for both ⟨r2⟩1/2m

and ⟨r2⟩1/2p . The theoretical calculations also show that the enhance-
ment of nuclear radius may result from the sudden increase of surface
diffuseness.

• The rnp were directly determined from rm by adopting the known rp.
The present rnp of

48Ca is consistent with the recent experimental result
by the dipole polarizability αD.

• The sensitivity of the present rnp to the EOS parameter L was exam-
ined. The correlation between rnp and L was studied with the help of
the mean field calculations. Although the present experimental rnp have
a possibility to deduce L with 16 MeV statistical error, the precision for
the determination of L is dictated by the large systematic error which
results from the uncertainty of nucleon density distribution ∆ρN(0).

• It was shown that the above systematic error can be avoided by utilizing
the relative values of rnp. Taking such approach, the present data
including 49,50,51Ca are expected to have a sensitivity of 30 MeV to
determine L.

6.2 Future Prospect

6.2.1 Nuclear Structure

In the present study, the evolution of nuclear radii beyond N = 28 was
discussed from several aspects. Within the framework of the HF theory, for
example, the kink structure at the neutron magic number N = 28 may be
related to the strength of spin-orbit force. However, this mechanism cannot
be understood well in the microscopic level at present. Therefore, further
progress of theoretical study to explain this mechanism simultaneously for
both proton and matter radii is strongly desired. The experimental matter
radii across the neutron magic number has been determined for the first time.
It will be interesting to understand theoretically the evolution of the matter
radii.

It was also pointed out σI measurements may provide a useful means
to identify the emergence/disappearance of a neutron magic number. Such
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indication has been suggested from the systematics of charge radii. However,
in order to establish this method, further studies are required. Therefore, σI
for other nuclides across the well known magic numbers should be measured
in order to verify whether the kink structure is commonly found or not.

In terms of the shell evolution in the Ca isotopic chain, 52Ca and 54Ca
were reported as newly established doubly-magic nuclei. Hence, it will be of
interest to measure σI for more neutron-rich Ca isotopes.

6.2.2 Equation of State

Due to the underestimation of presently available theoretical calculations
for nuclear radii of Ca isotopes beyond N = 28 compared to experimental
results, we could not deduce a precise value of L from the present data.
Therefore, the future progress in the theoretical framework which can ex-
plain the evolution of nuclear radii for Ca isotopes including 49−51Ca in the
microscopic level is anticipated. It will be interesting to know if the ab ini-
tio calculations using the NNLOsat, which can reproduce the experimental
charge radii relatively well, can reproduce the experimental matter radii, and
hence provide a more reliable means to extract L from the present directly-
determined rnp.

In deducing L from the absolute value of rnp, ∆ρN(0) which was deter-
mined from several hadron elastic scattering data results in a large systematic
error. This may be improved in several ways. The hadron elastic scattering
data have large discrepancies between different measurements beyond the
quoted errors. Since the 1980s when the latest results of those data were
reported, theoretical physics has achieved steady progress. For this reason,
the reanalysis of hadron elastic scattering data with the more sophisticated
theory may reduce this systematic error. Further experimental studies for de-
ducing nucleon density distributions of Ca isotopes such as additional hadron
elastic scattering experiments and the measurement of the energy dependence
of reaction cross sections can also help to reduce the uncertainties of central
nucleon density.

The present rnp’s of Ca isotopes were obtained in the range of 0.05 <
δ < 0.22, where δ is a relative neutron excess δ = (N − Z)/A. In order
to improve the sensitivity to L, measurements of rnp in a wider range are
required. For example, Ni isotopic chain is one of the next objectives. We
have measured σI for

58−78Ni (0.03 < δ < 0.28) in the same experiment as for
nuclides reported in this thesis. Besides, we have also measured the charge-
changing-cross sections σCC, which is being developed as a probe for proton
radii. By the combination of σI and σCC, rnp for Ni isotopes will be extracted
and discussed in the near future.
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A Derivation Formula of Interaction Cross

Section

In the σI measurements with a target whose thickness is not constant, σI
can be strictly derived as

σI =

∫
N(x)

[
−1

t(x)
lnR(x)

]
dx∫

N(x)dx

≡ ⟨ −1

t(x)
lnR(x)⟩,

(A.1)

where t(x) is the target profile, R(x) the non-reaction rate distribution, and
N(x) the beam profile along the horizontal axis x, respectively. In the fol-
lowing, we show the validity of the following equation within less than 10−4

descripancy:

⟨ −1

t(x)
lnR(x)⟩ ≃ −1

⟨t(x)⟩
ln⟨R(x)⟩. (A.2)

When the wedge-shaped target is employed, t(x) can be defined as

t(x) = ⟨t⟩+ a (x− ⟨x⟩) , (A.3)

where ⟨t⟩ is a weighted-mean thickness, a a slope of the target thickness,
and ⟨x⟩ a weighted-mean position of the beam profile, respectively. By using
Eq. (A.3), the left-hand side of Eq. (A.2) can be converted to:

⟨ −1

t(x)
lnR(x)⟩ =−

∫ [
1

t(x)
lnR(x)f(x)

]
dx

=−
∫ [

1

⟨t⟩+ a (x− ⟨x⟩)
lnR(x)f(x)

]
dx

=− 1

⟨t⟩

∫ [{∑
n=0

(
a (x− ⟨x⟩)

⟨t⟩

)n
}
lnR(x)f(x)

]
dx

=− 1

⟨t⟩

∫
[1 · lnR(x)f(x)] dx

− 1

⟨t⟩

∫ [(
−a (x− ⟨x⟩)

⟨t⟩

)
· lnR(x)f(x)

]
dx

− 1

⟨t⟩

∫ [(
−a (x− ⟨x⟩)

⟨t⟩

)2

· lnR(x)f(x)

]
dx

...,

(A.4)
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where f(x) is a probability function of beam profile defined as

f(x) ≡ N(x)∫
N(x)dx

. (A.5)

In the present work, a (x− ⟨x⟩) /⟨t⟩ is estimated as

⟨t⟩ = 1.81 [g/cm2]

a = 1.87× 10−3 [g/cm2/mm]

x− ⟨x⟩ = 10 [mm]

a (x− ⟨x⟩)
⟨t⟩

∼ 10−2.

(A.6)

Therefore, we can ignore the terms after the third one in Eq. (A.4) within
less than 10−4 accuracy:

⟨ −1

t(x)
lnR(x)⟩ = − 1

⟨t⟩

[
⟨lnR⟩ −

∫
a (x− ⟨x⟩)

⟨t⟩
· lnR(x)f(x)dx

]
. (A.7)

From the Cumulant expansion, ln⟨R⟩ can be reduced as

⟨R⟩ = ⟨elnR⟩
= e⟨lnR⟩⟨e(lnR−⟨lnR⟩)⟩

(A.8)

ln⟨R⟩ = ⟨lnR⟩+ ln

(
1 +

1

2
⟨(lnR− ⟨lnR⟩)⟩+ · · ·

)
∼ ⟨lnR⟩+ 1

2
⟨(lnR− ⟨lnR⟩)2⟩

(A.9)

By substituting Eq. (A.9) into Eq. (A.7), the following equation can be de-
rived:

⟨ −1

t(x)
lnR(x)⟩

= − 1

⟨t⟩
ln⟨R⟩+ 1

⟨t⟩
1

2
⟨(lnR− ⟨lnR⟩)2⟩+ 1

⟨t⟩

⟨
a (x− ⟨x⟩)

⟨t⟩
· lnR(x)

⟩
.

= − 1

⟨t⟩
ln⟨R⟩

1− 1

2

⟨(lnR− ⟨lnR⟩)2⟩
ln⟨R⟩

−

⟨
a (x− ⟨x⟩)

⟨t⟩
· lnR(x)

⟩
ln⟨R⟩


(A.10)
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On the other hand, lnR also can be represented as

lnR = −σI⟨t⟩
{
1 +

a

⟨t⟩
(x− ⟨x⟩)

}
. (A.11)

Therefore, the dispersion of lnR is converted to:

⟨(lnR− ⟨lnR⟩)2⟩ = ⟨(lnR)2⟩ − ⟨lnR⟩2

= σ2
I ⟨t⟩2 ·

a2

⟨t⟩2
⟨(x− ⟨x⟩)2⟩

=

(
σI⟨t⟩ ·

⟨x− ⟨x⟩⟩
⟨t⟩

)2

(A.12)

From Eq. (A.12), the effect of the second term in Eq. (A.10) is negligibly
small as

1

2
· ⟨(lnR− ⟨lnR⟩)2⟩

ln⟨R⟩
=

1

2
· 1

ln⟨R⟩
·
(
σI⟨t⟩ ·

⟨x− ⟨x⟩⟩
⟨t⟩

)2

=
1

2

(
σI⟨t⟩
ln⟨R⟩

)
(σI⟨t⟩)

(
⟨x− ⟨x⟩⟩

⟨t⟩

)2

∼ 1

2
· 1 · 10−1 · 10−4 ∼ 10−5

(A.13)

The third term in Eq. (A.10) also can be ignored as⟨
a (x− ⟨x⟩)

⟨t⟩
· lnR(x)

⟩
ln⟨R⟩

=
1

ln⟨R⟩

⟨
a (x− ⟨x⟩)

⟨t⟩
(−σI⟨t⟩)

{
1 +

a

⟨t⟩
(x− ⟨x⟩)

}⟩

=

(
− σI⟨t⟩
ln⟨R⟩

)
·
(
a2⟨(x− ⟨x⟩)2⟩

⟨t⟩2

)
∼ 1 · 10−4 ∼ 10−4

(A.14)

Therefore, Eq. (A.10) can be reduced to Eq. (A.2) within less than 10−4

discrepancy.
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B Mass number dependence of matter radii

for stable nuclei

In the case of stable nuclei, the RMS charge radii ⟨r2⟩1/2ch have been system-
atically measured via the electron elastic scattering, the isotope shift, and the
transition energy of muonic atom [AN13]. In Fig. B.1, previously measured

RMS proton radii ⟨r2⟩1/2p of stable nuclei which were derived from ⟨r2⟩1/2ch in
accordance with Eq. (5.8) are shown by open or closed circles. Based on the

fact that the stable nuclei have the almost same RMS matter radii ⟨r2⟩1/2m

as the RMS proton ones ⟨r2⟩1/2p , we can regard the mass number A depen-

dence of ⟨r2⟩1/2p as that of ⟨r2⟩1/2m . The A dependence of ⟨r2⟩1/2m was obtained

through the fitting for the experimental ⟨r2⟩1/2p between 35 ≤ A ≤ 48 shown
by closed circles in Fig. B.1 to the function of A1/3 as

0.9324(A+ 5.232)1/3 ± 0.0453(S.D.)[fm], (B.1)

where ”S.D.” means the standard deviation. In Fig. B.1, the fitting result
and the corresponding standard deviation are represented by the solid line
and the gray band, respectively.

4.0

3.5

3.0

2.5

<r
2 >

p1/
2  (f

m
)

6050403020100

Mass number A

 35 ≤ A ≤ 48
 Fit 
 Standard deviation

 

Figure B.1: Mass number A dependence of ⟨r2⟩1/2p of stable nuclei [AN13].
The fitting result for the nuclei between 35 ≤ A ≤ 48 (closed circles) and the
corresponding standard deviation are represented by the solid line and the
gray band, respectively.
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C PID Spectra

In Sec. 4.1, we explained the procedure of data analysis in the case of 43Ca
as an example. In this section, we show the spectra of particle identification
before and after the reaction target in the case of the other nuclides:

(a) A/QF3F5 vs. ZF3IC with gate#6.

(b) ZF5IC vs. ZF7IC with DS#1 and DS#2.
(When there is a tail at large ZF5IC, these events were counted as non-
charge-changing particles. These counting gates are shown by horizon-
tal red solid lines in the following figures.)

(c) A/QF5F7 vs. ∆EF7PL with DS#3.

(d) A/QF5F7 vs. ∆EF7PL with DS#4.
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(a) A/QF3F5 vs. ZF3IC.
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(d) A/QF5F7 vs. ∆EF7PL.

Figure C.1: PID information of 40K with the Reaction target.
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(a) A/QF3F5 vs. ZF3IC.
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Figure C.2: PID information of 40K without the Reaction target.
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Figure C.3: PID information of 41K with the Reaction target.
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Figure C.4: PID information of 41K without the Reaction target.
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Figure C.5: PID information of 42K with the Reaction target.
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Figure C.6: PID information of 42K without the Reaction target.
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Figure C.7: PID information of 42Ca with the Reaction target.
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Figure C.8: PID information of 42Ca without the Reaction target.
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Figure C.9: PID information of 43Ca with the Reaction target.
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Figure C.10: PID information of 43Ca without the Reaction target.
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Figure C.11: PID information of 44Ca with the Reaction target.

182



A/Q vs Z @F35 w/ Emittance cut + Contami. cut

A/Q35

2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25

Z
35

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

0

10

20

30

40

50

60

70

80

A/Q vs Z @F35 w/ Emittance cut + Contami. cut

(a) A/QF3F5 vs. ZF3IC.

Z(F5IC)

16 17 18 19 20 21 22 23

Z
(F

7I
C

)

16

17

18

19

20

21

22

23

0

10

20

30

40

50

60

70

Z(F5IC) vs Z(F7IC)

(b) ZF5IC vs. ZF7IC.

A/Q57 vs F7PLdE (Non-reaction in F7PL)

A/Q57

2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30

dE
 in

 F
7P

L
(c

h)

0

100

200

300

400

500

600

700

800

0

20

40

60

80

100

120

140

160

180

200

220

A/Q57 vs F7PLdE (Non-reaction in F7PL)

(c) A/QF5F7 vs. ∆EF7PL.

A/Q57 vs F7PLdE (Reaction in F7PL)

A/Q57

2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30

dE
 in

 F
7P

L
(c

h)

0

100

200

300

400

500

600

700

800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A/Q57 vs F7PLdE (Reaction in F7PL)

(d) A/QF5F7 vs. ∆EF7PL.

Figure C.12: PID information of 44Ca without the Reaction target.
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Figure C.13: PID information of 45Ca with the Reaction target.
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Figure C.14: PID information of 45Ca without the Reaction target.
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Figure C.15: PID information of 46Ca with the Reaction target.
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Figure C.16: PID information of 46Ca without the Reaction target.
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Figure C.17: PID information of 47Ca with the Reaction target.
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Figure C.18: PID information of 47Ca without the Reaction target.
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Figure C.19: PID information of 48Ca with the Reaction target.
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Figure C.20: PID information of 48Ca without the Reaction target.
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Figure C.21: PID information of 49Ca with the Reaction target.
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Figure C.22: PID information of 49Ca without the Reaction target.
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Figure C.23: PID information of 50Ca with the Reaction target.
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Figure C.24: PID information of 50Ca without the Reaction target.
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Figure C.25: PID information of 51Ca with the Reaction target.
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Figure C.26: PID information of 51Ca without the Reaction target.
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Figure C.27: PID information of 44Sc with the Reaction target.
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Figure C.28: PID information of 44Sc without the Reaction target.
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Figure C.29: PID information of 45Sc with the Reaction target.
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Figure C.30: PID information of 45Sc without the Reaction target.
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Figure C.31: PID information of 46Sc with the Reaction target.
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Figure C.32: PID information of 46Sc without the Reaction target.
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D Transmission Distribution

Transmission distributions along XF3, YF3, AF3, BF3, and XF5 axes for each
nuclide are shown in the same manner as Figs. 4-20 - 4-24.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.1: Transmission distributions of 40K with the reaction target.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.2: Transmission distributions of 40K without the reaction target.
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(c) F3A dependence.
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(d) F3B dependence.
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Figure D.3: Transmission distributions of 41K with the reaction target.
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(b) F3Y dependence.
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(d) F3B dependence.
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Figure D.4: Transmission distributions of 41K without the reaction target.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.5: Transmission distributions of 42K with the reaction target.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.6: Transmission distributions of 42K without the reaction target.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.7: Transmission distributions of 43K with the reaction target.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.8: Transmission distributions of 43K without the reaction target.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.9: Transmission distributions of 44K with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.10: Transmission distributions of 44K without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.11: Transmission distributions of 45K with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.12: Transmission distributions of 45K without the reaction target.

216



F3X (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F3XTransmission vs F3X

(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.13: Transmission distributions of 46K with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.14: Transmission distributions of 46K without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.15: Transmission distributions of 47K with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.16: Transmission distributions of 47K without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.17: Transmission distributions of 48K with the reaction target.

221



F3X (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F3XTransmission vs F3X

(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.18: Transmission distributions of 48K without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.19: Transmission distributions of 42Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.20: Transmission distributions of 42Ca without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.

F3B (mrad)
-30 -20 -10 0 10 20 30

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F3BTransmission vs F3B

(d) F3B dependence.
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(e) F5X dependence.

Figure D.21: Transmission distributions of 43Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.22: Transmission distributions of 43Ca without the reaction target.

226



F3X (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F3XTransmission vs F3X

(a) F3X dependence.
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(b) F3Y dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.23: Transmission distributions of 44Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.24: Transmission distributions of 44Ca without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.

F3B (mrad)
-30 -20 -10 0 10 20 30

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F3BTransmission vs F3B

(d) F3B dependence.

F5X (mm)

-100 -80 -60 -40 -20 0 20 40 60 80 100

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F5XTransmission vs F5X

(e) F5X dependence.

Figure D.25: Transmission distributions of 45Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.

F5X (mm)

-100 -80 -60 -40 -20 0 20 40 60 80 100

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F5XTransmission vs F5X

(e) F5X dependence.

Figure D.26: Transmission distributions of 45Ca without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.27: Transmission distributions of 46Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.28: Transmission distributions of 46Ca without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.29: Transmission distributions of 47Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.30: Transmission distributions of 47Ca without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.31: Transmission distributions of 48Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.32: Transmission distributions of 48Ca without the reaction target.
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(b) F3Y dependence.
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(e) F5X dependence.

Figure D.33: Transmission distributions of 49Ca with the reaction target.
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(b) F3Y dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.34: Transmission distributions of 49Ca without the reaction target.
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(b) F3Y dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.35: Transmission distributions of 50Ca with the reaction target.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.36: Transmission distributions of 50Ca without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.

F3A (mrad)
-30 -20 -10 0 10 20 30

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F3ATransmission vs F3A

(c) F3A dependence.

F3B (mrad)
-30 -20 -10 0 10 20 30

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F3BTransmission vs F3B

(d) F3B dependence.

F5X (mm)

-100 -80 -60 -40 -20 0 20 40 60 80 100

T
ra

ns
m

is
si

on
 e

ff
ic

ie
nc

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Transmission vs F5XTransmission vs F5X

(e) F5X dependence.

Figure D.37: Transmission distributions of 51Ca with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.38: Transmission distributions of 51Ca without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.39: Transmission distributions of 44Sc with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.40: Transmission distributions of 44Sc without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.41: Transmission distributions of 45Sc with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.42: Transmission distributions of 45Sc without the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.43: Transmission distributions of 46Sc with the reaction target.
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(a) F3X dependence.
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(b) F3Y dependence.
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(c) F3A dependence.
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(d) F3B dependence.
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(e) F5X dependence.

Figure D.44: Transmission distributions of 46Sc without the reaction target.
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